2013年6月3日月曜日

開発環境

計算機プログラムの構造と解釈(Gerald Jay Sussman(原著)、Julie Sussman(原著)、Harold Abelson(原著)、和田 英一(翻訳)、ピアソンエデュケーション)の2(データによる抽象の構築)、2.3(記号データ)、2.3.2(例: 記号微分)の問題 2.57を解いてみる。

その他参考書籍

問題 2.57

コード

sample.scm

(define (deriv exp var)
  (cond ((number? exp) 0)
        ((variable? exp)
         (if (same-variable? exp var) 1 0))
        ((sum? exp)
         (make-sum (deriv (addend exp) var)
                   (deriv (augend exp) var)))
        ((product? exp)
         (make-sum  (make-product (multiplier exp)
                                  (deriv (multiplicand exp) var))
                    (make-product (deriv (multiplier exp) var)
                                  (multiplicand exp))))
        ((exponentiation? exp)
           (let ((n (exponent exp))
                 (u (base exp)))
             (make-product n
                           (make-product (make-exponentiation u
                                                              (make-sum n -1))
                                         (deriv u var)))))
        (else (error "unkown expression type -- DERIV" exp))))

(define (make-sum a1 a2)
  (cond ((=number? a1 0) a2)
        ((=number? a2 0) a1)
        ((and (number? a1) (number? a2)) (+ a1 a2))
        (else (list '+ a1 a2))))

(define (addend s) (cadr s))

; 任意個の項の和のための修正箇所
(define (augend s)
  (if (null? (cdddr s))
      (caddr s)
      (cons '+ (cddr s))))

(define (make-product m1 m2) 
  (cond ((or (=number? m1 0) (=number? m2 0)) 0)
        ((=number? m1 1) m2)
        ((=number? m2 1) m1)
        ((and (number? m1) (number? m2)) (* m1 m2))
        (else (list '* m1 m2))))

(define (multiplier p) (cadr p))

; 任意個の項の積のための修正箇所
(define (multiplicand p)
  (if (null? (cdddr p))
      (caddr p)
      (cons '* (cddr p))))

(define (variable? x) (symbol? x))

(define (same-variable? v1 v2)
  (and (variable? v1) (variable? v2) (eq? v1 v2)))

(define (sum? x)
  (and (pair? x) (eq? (car x) '+)))

(define (product? x)
  (and (pair? x) (eq? (car x) '*)))

(define (exponentiation? x)
  (and (pair? x) (eq? (car x) '**)))

(define (base x) (cadr x))

(define (exponent x) (caddr x))

(define (make-exponentiation a b)
  (cond ((=number? b 0) 1)
        ((=number? b 1) a)
        (else (list '** a b))))

(define (=number? exp num)
  (and (number? exp) (= exp num)))

入出力結果(Terminal, REPL(Read, Eval, Print, Loop))

1 ]=> (deriv '(* (* x y) (+ x 3)) 'x)

;Value 2: (+ (* x y) (* y (+ x 3)))

1 ]=> (deriv '(* x y (+ x 3)) 'x)

;Value 3: (+ (* x y) (* y (+ x 3)))

0 コメント:

コメントを投稿