開発環境
- OS X Lion - Apple(OS)
- Emacs、BBEdit - Bare Bones Software, Inc. (Text Editor)
- プログラミング言語: MIT/GNU Scheme
計算機プログラムの構造と解釈(Gerald Jay Sussman(原著)、Julie Sussman(原著)、Harold Abelson(原著)、和田 英一(翻訳)、ピアソンエデュケーション)の2(データによる抽象の構築)、2.3(記号データ)、2.3.2(例: 記号微分)の問題 2.58、a、bを解いてみる。
その他参考書籍
問題 2.58
a.
コード
sample.scm
(define (deriv exp var) (cond ((number? exp) 0) ((variable? exp) (if (same-variable? exp var) 1 0)) ((sum? exp) (make-sum (deriv (addend exp) var) (deriv (augend exp) var))) ((product? exp) (make-sum (make-product (multiplier exp) (deriv (multiplicand exp) var)) (make-product (deriv (multiplier exp) var) (multiplicand exp)))) ((exponentiation? exp) (let ((n (exponent exp)) (u (base exp))) (make-product n (make-product (make-exponentiation u (make-sum n -1)) (deriv u var))))) (else (error "unkown expression type -- DERIV" exp)))) (define (make-sum a1 a2) (cond ((=number? a1 0) a2) ((=number? a2 0) a1) ((and (number? a1) (number? a2)) (+ a1 a2)) (else (list a1 '+ a2)))) (define (addend s) (car s)) (define (augend s) (caddr s)) (define (make-product m1 m2) (cond ((or (=number? m1 0) (=number? m2 0)) 0) ((=number? m1 1) m2) ((=number? m2 1) m1) ((and (number? m1) (number? m2)) (* m1 m2)) (else (list m1 '* m2)))) (define (multiplier p) (car p)) (define (multiplicand p) (caddr p)) (define (variable? x) (symbol? x)) (define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2))) (define (sum? x) (and (pair? x) (eq? (cadr x) '+))) (define (product? x) (and (pair? x) (eq? (cadr x) '*))) (define (exponentiation? x) (and (pair? x) (eq? (cadr x) '**))) (define (base x) (car x)) (define (exponent x) (caddr x)) (define (make-exponentiation a b) (cond ((=number? b 0) 1) ((=number? b 1) a) (else (list a '** b)))) (define (=number? exp num) (and (number? exp) (= exp num))) (define a '(x + (3 * (x + (y + 2)))))
入出力結果(Terminal, REPL(Read, Eval, Print, Loop))
1 ]=> (deriv a 'x) ;Value: 4
b.
コード
sample.scm
(define (deriv exp var) (cond ((number? exp) 0) ((variable? exp) (if (same-variable? exp var) 1 0)) ((sum? exp) (make-sum (deriv (addend exp) var) (deriv (augend exp) var))) ((product? exp) (make-sum (make-product (multiplier exp) (deriv (multiplicand exp) var)) (make-product (deriv (multiplier exp) var) (multiplicand exp)))) ((exponentiation? exp) (let ((n (exponent exp)) (u (base exp))) (make-product n (make-product (make-exponentiation u (make-sum n -1)) (deriv u var))))) (else (error "unkown expression type -- DERIV" exp)))) (define (make-sum a1 a2) (cond ((=number? a1 0) a2) ((=number? a2 0) a1) ((and (number? a1) (number? a2)) (+ a1 a2)) ; 追加 ((eq? a1 a2) (list 2 '* a1)) (else (list a1 '+ a2)))) ; 修正箇所 (define (addend s) (define (iter result s) (if (eq? (cadr s) '+) (if (null? result) (car s) (append result (list (car s)))) (iter (append result (list (car s))) (cdr s)))) (iter '() s)) ; 修正箇所 (define (augend s) (if (eq? (cadr s) '+) (let ((a (cddr s))) (if (and (pair? a) (null? (cdr a))) (car a) a)) (augend (cddr s)))) (define (make-product m1 m2) (cond ((or (=number? m1 0) (=number? m2 0)) 0) ((=number? m1 1) m2) ((=number? m2 1) m1) ((and (number? m1) (number? m2)) (* m1 m2)) (else (list m1 '* m2)))) (define (multiplier p) (car p)) ; 修正箇所 (define (multiplicand p) (let ((a (cddr p))) (if (and (pair? a) (null? (cdr a))) (car a) a))) (define (variable? x) (symbol? x)) (define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2))) ;(define (sum? x) ; (and (pair? x) (eq? (cadr x) '+))) (define (sum? x) (memq '+ x)) (define (product? x) (not (memq '+ x))) (define (exponentiation? x) (and (pair? x) (eq? (cadr x) '**))) (define (base x) (car x)) (define (exponent x) (caddr x)) (define (make-exponentiation a b) (cond ((=number? b 0) 1) ((=number? b 1) a) (else (list a '** b)))) (define (=number? exp num) (and (number? exp) (= exp num))) (define a '(x + (3 * (x + (y + 2)))))
入出力結果(Terminal, REPL(Read, Eval, Print, Loop))
]=> (deriv '(x + x * x) 'x) ;Value 2: (1 + (2 * x)) 1 ]=> (deriv '(x + (x * x)) 'x) ;Value 3: (1 + (2 * x)) 1 ]=> (deriv '((x + x) * x) 'x) ;Value 4: ((x + x) + (2 * x)) 1 ]=> (deriv '(2 * x) 'x) ;Value: 2 1 ]=> (deriv '(2 * x * x) 'x) ;Value 5: (2 * (2 * x)) 1 ]=> (deriv '(2 * x * x * x) 'x) ;Value 6: (2 * ((x * (2 * x)) + (x * x))) 1 ]=> (deriv '(2 * x * x * x * x) 'x) ;Value 7: (2 * ((x * ((x * (2 * x)) + (x * x))) + (x * x * x)))
ということで、不要な括弧は省き、乗算は加算より前に行う、微分プログラムが動作するような、適切な述語、選択子、構成子は設計できる。
0 コメント:
コメントを投稿