2014年4月24日木曜日

開発環境

計算機プログラムの構造と解釈(Gerald Jay Sussman(原著)、Julie Sussman(原著)、Harold Abelson(原著)、和田 英一(翻訳)、ピアソンエデュケーション、原書: Structure and Interpretation of Computer Programs (MIT Electrical Engineering and Computer Science)(SICP))の2(データによる抽象の構築)、2.3(記号データ)、2.3.2(例: 記号微分)、問題 2.58-a.を解いてみる。

その他参考書籍

問題 2.58-a.

コード(BBEdit, Emacs)

sample.scm

#!/usr/bin/env gosh
;; -*- coding: utf-8 -*-

;; これまでに書いた手続き
(load "./procedures.scm")

(define (make-sum a1 a2)
  (cond ((=number? a1 0) a2)
        ((=number? a2 0) a1)
        ((and (number? a1) (number? a2))
         (+ a1 a2))
        (else (list a1 '+ a2))))

(define (addend s) (car s))

(define (augend s) (caddr s))

(define (sum? x)
  (and (pair? x) (eq? (cadr x) '+)))

(define (product? x)
  (and (pair? x) (eq? (cadr x) '*)))

(define (multiplier p) (car p))

(define (multiplicand p) (caddr p))

(define (make-product m1 m2)
  (cond ((or (=number? m1 0)
             (=number? m2 0))
         0)
        ((=number? m1 1) m2)
        ((=number? m2 1) m1)
        ((and (number? m1)
              (number? m2))
         (* m1 m2))
        (else (list m1 '* m2))))

(define (make-exponentiation b e)
  (cond ((=number? e 0) 1)
        ((=number? e 1) b)
        (else
         (list b '** e))))

(define (base exp) (car exp))

(define (exponent exp) (caddr exp))

(define (exponentiation? exp)
  (and (pair? exp)
       (eq? (cadr exp) '**)))

(define (deriv exp var)
  (cond ((number? exp) 0)
        ((variable? exp)
         (if (same-variable? exp
                             var)
             1
             0))
        ((sum? exp)
         (make-sum (deriv (addend exp)
                          var)
                   (deriv (augend exp)
                          var)))
        ((product? exp)
         (make-sum
          (make-product (multiplier exp)
                        (deriv (multiplicand exp)
                               var))
          (make-product (deriv (multiplier exp)
                               var)
                        (multiplicand exp))))
        ((exponentiation? exp)
         (let ((n (exponent exp))
               (u (base exp)))
           (make-product
            (make-product n
                          (make-exponentiation u
                                               (make-sum  n -1)))
            (deriv u var))))
        (else
         (error "unknown expression type -- DERIV" #?=exp))))

(for-each (lambda (exp)
            (print "(derive " exp " x) = "
                   (deriv exp 'x)))
          (list '(x + 3)
                '(x * y)
                '((x * y) * (x + 3))
                '(x + (3 * (x + (y + 2))))))

入出力結果(Terminal(gosh), REPL(Read, Eval, Print, Loop))

$ ./sample.scm
(derive (x + 3) x) = 1
(derive (x * y) x) = y
(derive ((x * y) * (x + 3)) x) = ((x * y) + (y * (x + 3)))
(derive (x + (3 * (x + (y + 2)))) x) = 4
$

0 コメント:

コメントを投稿