計算機プログラムの構造と解釈[第2版]
(翔泳社)
ハロルド エイブルソン (著) ジュリー サスマン (著)
ジェラルド・ジェイ サスマン (著)
Harold Abelson (原著) Julie Sussman (原著)
Gerald Jay Sussman (原著) 和田 英一 (翻訳)
開発環境
- OS X Yosemite - Apple (OS)
- Emacs(Text Editor)
- Scheme (プログラミング言語)
- kscheme, Gauche (処理系)
計算機プログラムの構造と解釈[第2版](ハロルド エイブルソン (著)、ジュリー サスマン (著)、ジェラルド・ジェイ サスマン (著)、Harold Abelson (原著)、Julie Sussman (原著)、Gerald Jay Sussman (原著)、和田 英一 (翻訳)、翔泳社、原書: Structure and Interpretation of Computer Programs (MIT Electrical Engineering and Computer Science)(SICP))の2(データによる抽象の構築)、2.3(記号データ)、2.3.3(例: 集合の表現)、問題2.65.を解いてみる。
その他参考書籍
- Instructor's Manual to Accompany Structure & Interpretation of Computer Programs
- プログラミングGauche (Kahuaプロジェクト (著), 川合 史朗 (監修), オライリージャパン)
- Scheme手習い
問題2.65.
コード(Emacs)
(define equal?
(lambda (a b)
(if (and (pair? a) (pair? b))
(and (eq? (car a) (car b))
(equal? (cdr a) (cdr b)))
(eq? a b))))
(define entry (lambda (tree) (car tree)))
(define left-branch (lambda (tree) (cadr tree)))
(define right-branch (lambda (tree) (caddr tree)))
(define make-tree
(lambda (entry left right)
(list entry left right)))
(define tree->list
(lambda (tree)
(define copy-to-list
(lambda (tree result-list)
(if (null? tree)
result-list
(copy-to-list (left-branch tree)
(cons (entry tree)
(copy-to-list (right-branch tree)
result-list))))))
(copy-to-list tree (quote ()))))
(define list->tree
(lambda (elements)
(car (partial-tree elements (length elements)))))
(define partial-tree
(lambda (elts n)
(if (= n 0)
(cons (quote ()) elts)
(let ((left-size (quotient (- n 1) 2)))
(let ((left-result (partial-tree elts left-size)))
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1))))
(let ((this-entry (car non-left-elts))
(right-result (partial-tree (cdr non-left-elts)
right-size)))
(let ((right-tree (car right-result))
(remaining-elts (cdr right-result)))
(cons (make-tree this-entry left-tree right-tree)
remaining-elts)))))))))
(define union-set
(lambda (set1 set2)
(define sorted-list
(lambda (list1 list2)
(cond ((null? list1) list2)
((null? list2) list1)
((< (car list1)
(car list2))
(cons (car list1)
(sorted-list (cdr list1)
list2)))
((= (car list1)
(car list2))
(cons (car list1)
(sorted-list (cdr list1)
(cdr list2))))
((> (car list1)
(car list2))
(cons (car list2)
(sorted-list list1
(cdr list2)))))))
(let ((list1 (tree->list set1))
(list2 (tree->list set2)))
(list->tree (sorted-list list1 list2)))))
(define intersection-set
(lambda (set1 set2)
(define element-of-set?
(lambda (x set)
(cond ((null? set) #f)
((equal? x (car set)) #t)
(else (element-of-set? x (cdr set))))))
(define intersection-list
(lambda (set1 set2)
(cond ((or (null? set1) (null? set2)) (quote ()))
((element-of-set? (car set1) set2)
(cons (car set1)
(intersection-list (cdr set1) set2)))
(else
(intersection-list (cdr set1) set2)))))
(let ((list1 (tree->list set1))
(list2 (tree->list set2)))
(list->tree (intersection-list list1
list2)))))
(define set1 (list->tree (list 1 3 5 7 9)))
(define set2 (list->tree (list 2 4 6 8 10)))
(define set3 (list->tree (list 1 2 3 4 5)))
(define set4 (list->tree (list 6 7 8 9 10)))
(define set5 (list->tree (list 1 2 3 4 5 6 7 8 9 10)))
(define print (lambda (x) (display x) (newline)))
(define for-each
(lambda (proc items)
(if (not (null? items))
(begin (proc (car items))
(for-each proc (cdr items)))
'done)))
(begin (newline)
(for-each (lambda (set)
(print set))
(list (union-set set1 set2)
(union-set set1 set3)
(union-set set1 set4)
(union-set set1 set5)
(intersection-set set1 set2)
(intersection-set set1 set3)
(intersection-set set1 set4)
(intersection-set set1 set5))))
入出力結果(Terminal(kscheme), REPL(Read, Eval, Print, Loop))
$ kscheme < sample65.scm kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> kscm> (5 (2 (1 () ()) (3 () (4 () ()))) (8 (6 () (7 () ())) (9 () (10 () ())))) (4 (2 (1 () ()) (3 () ())) (7 (5 () ()) (9 () ()))) (6 (3 (1 () ()) (5 () ())) (8 (7 () ()) (9 () (10 () ())))) (5 (2 (1 () ()) (3 () (4 () ()))) (8 (6 () (7 () ())) (9 () (10 () ())))) () (3 (1 () ()) (5 () ())) (7 () (9 () ())) (5 (1 () (3 () ())) (7 () (9 () ()))) done kscm> $
0 コメント:
コメントを投稿