計算機プログラムの構造と解釈[第2版]
(翔泳社)
ハロルド エイブルソン (著) ジュリー サスマン (著)
ジェラルド・ジェイ サスマン (著)
Harold Abelson (原著) Julie Sussman (原著)
Gerald Jay Sussman (原著) 和田 英一 (翻訳)
開発環境
- OS X Yosemite - Apple (OS)
- Emacs(Text Editor)
- Scheme (プログラミング言語)
- kscheme, Gauche, GNU Guile (処理系)
計算機プログラムの構造と解釈[第2版](ハロルド エイブルソン (著)、ジュリー サスマン (著)、ジェラルド・ジェイ サスマン (著)、Harold Abelson (原著)、Julie Sussman (原著)、Gerald Jay Sussman (原著)、和田 英一 (翻訳)、翔泳社、原書: Structure and Interpretation of Computer Programs (MIT Electrical Engineering and Computer Science)(SICP))の2(データによる抽象の構築)、2.5(汎用演算システム)、2.5.1(汎用算術演算子)、問題2.78.を解いてみる。
その他参考書籍
- Instructor's Manual to Accompany Structure & Interpretation of Computer Programs
- プログラミングGauche (Kahuaプロジェクト (著), 川合 史朗 (監修), オライリージャパン)
- Scheme手習い
問題2.78.
コード(Emacs)
(begin
(newline)
(define print (lambda (x) (display x) (newline)))
(define error (lambda (message value)
(display message) (display " ") (display value) (newline)))
(define inc (lambda (n) (+ n 1)))
(define square (lambda (x) (* x x)))
(define sqrt
(lambda (x)
(define sqrt-iter
(lambda (guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x)
x))))
(define good-enough?
(lambda (guess x)
(< (abs (- (square guess) x)) 0.001)))
(define improve
(lambda (guess x)
(average guess (/ x guess))))
(sqrt-iter 1.0 x)))
(define average (lambda (x y) (/ (+ x y) 2)))
(define abs (lambda (x) (if (< x 0)
(* -1 x)
x)))
(define map
(lambda (proc items)
(if (null? items)
(quote ())
(cons (proc (car items))
(map proc (cdr items))))))
(define accumulate
(lambda (combiner null-value term a next b)
(define inner
(lambda (x result)
(if (> x b)
result
(inner (next x)
(combiner (term x)
result)))))
(inner a null-value)))
(define expt
(lambda (base n)
(define (iter n result)
(if (= n 0)
result
(iter (- n 1)
(* result base))))
(iter n 1)))
(define (factorial n)
(define (iter product counter)
(if (> counter n)
product
(iter (* counter product)
(+ counter 1))))
(iter 1 1))
(define sin
(lambda (x)
(accumulate + 0.0 (lambda (n)
(let ((a (+ (* 2 n) 1)))
(* (/ (expt -1 n)
(factorial a))
(expt x a))))
0 inc 10)))
(define cos
(lambda (x)
(accumulate + 0.0 (lambda (n)
(let ((a (* 2 n)))
(* (/ (expt -1 n)
(factorial a))
(expt x a))))
0 inc 10)))
(define make-table
(lambda ()
(let ((local-table (list (quote *table*))))
(define assoc
(lambda (key records)
(cond ((null? records) #f)
((equal? key (caar records))
(car records))
(else (assoc key (cdr records))))))
(define lookup
(lambda (key-1 key-2)
(let ((subtable (assoc key-1 (cdr local-table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record
(cdr record)
#f))
#f))))
(define insert!
(lambda (key-1 key-2 value)
(let ((subtable (assoc key-1 (cdr local-table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record
(set-cdr! record value)
(set-cdr! subtable
(cons (cons key-2 value)
(cdr subtable)))))
(set-cdr! local-table
(cons (list key-1
(cons key-2 value))
(cdr local-table)))))
(quote ok)))
(define dispatch
(lambda (m)
(cond ((eq? m (quote lookup-proc)) lookup)
((eq? m (quote insert-proc!)) insert!)
(else (error "Unknown operation -- TABLE" m)))))
dispatch)))
(define operation-table (make-table))
(define get (operation-table (quote lookup-proc)))
(define put (operation-table (quote insert-proc!)))
(define attach-tag
(lambda (type-tag contents)
(if (eq? type-tag (quote scheme-number))
contents
(cons type-tag contents))))
(define type-tag
(lambda (datum)
(cond ((number? datum) (quote scheme-number))
((pair? datum) (car datum))
(error "Bad tagged datum -- TYPE-TAG" datum))))
(define contents
(lambda (datum)
(cond ((number? datum) datum)
((pair? datum) (cdr datum))
(else error "Bad tagged datum -- CONTENTS" datum))))
;; 可変個引数の手続きの定義はまだ kscheme に実装してないから、明示的にリストを渡す
(define apply-generic
(lambda (op args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))
(if proc
(apply proc (map contents args))
(error "No method for these types -- APPLY-GENERIC"
(list op type-tags)))))))
(define add (lambda (x y) (apply-generic (quote add) (list x y))))
(define sub (lambda (x y) (apply-generic (quote sub) (list x y))))
(define mul (lambda (x y) (apply-generic (quote mul) (list x y))))
(define div (lambda (x y) (apply-generic (quote div) (list x y))))
(define real-part (lambda (z) (apply-generic (quote real-part) (list z))))
(define imag-part (lambda (z) (apply-generic (quote imag-part) (list z))))
(define magnitude (lambda (z) (apply-generic (quote magnitude) (list z))))
(define angle (lambda (z) (apply-generic (quote angle) (list z))))
(define make-from-real-imag
(lambda (real imag)
((get (quote make-from-real-imag) (quote rectangular)) real imag)))
(define make-from-mag-ang
(lambda (mag ang)
((get (quote make-from-mag-ang) (quote rectangular)) mag ang)))
(define install-scheme-number-package
(lambda ()
(put (quote add) (quote (scheme-number scheme-number))
(lambda (x y) (+ x y)))
(put (quote sub) (quote (scheme-number scheme-number))
(lambda (x y) (- x y)))
(put (quote mul) (quote (scheme-number scheme-number))
(lambda (x y) (* x y)))
(put (quote div) (quote (scheme-number scheme-number))
(lambda (x y) (/ x y)))
(quote done)))
(define install-rectangular-package
(lambda ()
(define real-part (lambda (z) (car z)))
(define imag-part (lambda (z) (cdr z)))
(define make-from-real-imag (lambda (x y) (cons x y)))
(define magnitude
(lambda (z)
(sqrt (+ (square (real-part z))
(square (imag-part z))))))
(define angle
(lambda (z)
(atan (imag-part z) (real-part z))))
(define make-from-mag-ang
(lambda (r a)
(cons (* r (cos a)) (* r (sin a)))))
(define tag (lambda (x) (attach-tag (quote rectangular) x)))
(put (quote real-part) (quote (rectangular)) real-part)
(put (quote imag-part) (quote (rectangular)) imag-part)
(put (quote magnitude) (quote (rectangular)) magnitude)
(put (quote angle) (quote (rectangular)) angle)
(put (quote make-from-real-imag) (quote rectangular)
(lambda (x y) (tag (make-from-real-imag x y))))
(put (quote make-from-mag-ang) (quote rectangular)
(lambda (r a) (tag (make-from-mag-ang r a))))
(quote done)))
(define install-polar-package
(lambda ()
(define magnitude (lambda (z) (car z)))
(define angle (lambda (z) (cdr z)))
(define make-from-mag-ang (lambda (r a) (cons r a)))
(define real-part
(lambda (z)
(* (magnitude z) (cos (angle z)))))
(define imag-part
(lambda (z)
(* (magnitude z) (sin (angle z)))))
(define make-from-real-imag
(lambda (x y)
(cons (sqrt (+ (square x) (square y)))
(atan y x))))
(define tag (lambda (x) (attach-tag (quote polar) x)))
(put (quote real-part) (quote (polar)) real-part)
(put (quote imag-part) (quote (polar)) imag-part)
(put (quote magnitude) (quote (polar)) magnitude)
(put (quote angle) (quote (polar)) angle)
(put (quote make-from-real-imag) (quote polar)
(lambda (x y) (tag (make-from-real-imag x y))))
(put (quote make-from-mag-ang) (quote polar)
(lambda (r a) (tag (make-from-mag-ang r a))))
(quote done)))
(define install-complex-package
(lambda ()
(define make-from-real-imag
(lambda (x y)
((get (quote make-from-real-imag) (quote rectangular)) x y)))
(define make-from-mag-ang
(lambda (r a)
((get (quote make-from-mag-ang) (quote polar)) r a)))
(define add-complex
(lambda (z1 z2)
(make-from-real-imag (+ (real-part z1) (real-part z2))
(+ (imag-part z1) (imag-part z2)))))
(define sub-complex
(lambda (z1 z2)
(make-from-real-imag (- (real-part z1) (real-part z2))
(- (imag-part z1) (imag-part z2)))))
(define mul-complex
(lambda (z1 z2)
(make-from-mag-ang (* (magnitude z1) (magnitude z2))
(+ (angle z1) (angle z2)))))
(define div-complex
(lambda (z1 z2)
(make-from-mag-ang (/ (magnitude z1) (magnitude z2))
(- (angle z1) (angle z2)))))
(define tag (lambda (z) (attach-tag (quote complex) z)))
(put (quote add) (quote (complex complex))
(lambda (z1 z2) (tag (add-complex z1 z2))))
(put (quote sub) (quote (complex complex))
(lambda (z1 z2) (tag (sub-complex z1 z2))))
(put (quote mul) (quote (complex complex))
(lambda (z1 z2) (tag (mul-complex z1 z2))))
(put (quote div) (quote (complex complex))
(lambda (z1 z2) (tag (div-complex z1 z2))))
(put (quote make-from-real-imag) (quote complex)
(lambda (x y) (tag (make-from-real-imag x y))))
(put (quote make-from-mag-ang) (quote complex)
(lambda (r a) (tag (make-from-mag-ang r a))))
(put (quote real-part) (quote (complex)) real-part)
(put (quote imag-part) (quote (complex)) imag-part)
(put (quote magnitude) (quote (complex)) magnitude)
(put (quote angle) (quote (complex)) angle)
(quote done)))
(install-scheme-number-package)
(install-rectangular-package)
(install-rectangular-package)
(install-complex-package)
(define make-complex-from-real-imag
(lambda (x y)
((get (quote make-from-real-imag) (quote complex)) x y)))
(define z (make-complex-from-real-imag 3 4))
(print z)
(print (magnitude z))
(print (add 5 10))
(print (sub (magnitude z) (magnitude z)))
(quote done))
入出力結果(Terminal(kscheme), REPL(Read, Eval, Print, Loop))
$ kscheme < sample78.scm kscm> (complex rectangular 3 . 4) 0.500002317825394900579e1 15 0.e0 done kscm> $
0 コメント:
コメントを投稿