学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- Emacs (Text Editor)
- JavaScript (プログラミング言語)
- D3.js (JavaScript Library)
- 参考書籍
- JavaScript 第6版 (David Flanagan(著)、村上 列(翻訳)、オライリージャパン)
- JavaScriptリファレンス 第6版(David Flanagan(著)、木下 哲也(翻訳)、オライリージャパン)
- インタラクティブ・データビジュアライゼーション(Scott Murray (著)、長尾 高弘 (翻訳)、オライリージャパン)
解析入門〈1〉(松坂 和夫(著)、岩波書店)の第2章(数列と級数)、2.2(数列の収束条件)、問題2.2、4-a、b.を取り組んでみる。
問題2.2、4-a、b.
an−an+2=an−an+1+αan+1+1=an−an+αan+1+αan+αan+1+1=an−an+α+α(an+1)an+1·an+1an+α+an+1=an−(1+α)an+2α2an+α+1=2an2+(α+1)an−(α+1)an−2α2an+α+1=2(an2−α)2an+α+1an+1−√α=an+αan+1−√α=an+α−√αan−√αan+1=(1−√α)an+√α(√α−1)an+1=(√α−1)(√α−an)an+1an<√α⇒an<an+2an>√a⇒an>an+2a1<√αa2−√α=(√α−1)(√α−a1)a1+1>0a2>√α
a2n−1<√αa2n>√αan+2=an+αan+1+αan+αan+1+1β=β+αβ+1+αβ+αβ+1+1β=(1+α)β+2α2β+α+12β2+αβ+β=β+αβ+2αβ2=αβ=√α
HTML5
<div id="graph0"></div> <div id="output0"></div> <label for="alpha0">α = </label> <input id="alpha0" type="number" min="1" value="5"> <label for="a1">a1 = </label> <input id="a1" type="number" min="0" value="2"> <label for="n0">n = </label> <input id="n0" type="number" min="1" step="1" value="10"> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample4.js"></script>
JavaScript
{ let div_graph = document.querySelector('#graph0'), div_output = document.querySelector('#output0'), input_alpha = document.querySelector('#alpha0'), input_a = document.querySelector('#a1'), input_n = document.querySelector('#n0'), inputs = [input_alpha, input_a, input_n], width = 600, height = 600, padding = 50; let f = (alpha, prev) => { return (prev + alpha) / (prev + 1); }; let getPoints = (alpha, a1, n) => { let prev = a1, result = [[1, prev]]; for (let i = 2; i <= n; i += 1) { let next = f(alpha, prev); result.push([i, next]); prev = next; } return result; } let plot = () => { let alpha = parseFloat(input_alpha.value), a1 = parseFloat(input_a.value); if (alpha > 1 && 0 < a1 && a1 < Math.sqrt(alpha)) { let n = parseInt(input_n.value, 10), points = getPoints(alpha, a1, n); console.log(points); let xscale = d3.scaleLinear() .domain([1, n]) .range([padding, width - padding]) let yscale = d3.scaleLinear() .domain([points[0][1] * 0.9, points[1][1] * 1.1]) .range([height - padding, padding]); console.log(points.map((x) => x[1])); div_graph.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', 2) .attr('color', 'green'); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); svg.append('line') .attr('x1', xscale(1)) .attr('y1', yscale(Math.sqrt(alpha))) .attr('x2', xscale(n)) .attr('y2', yscale(Math.sqrt(alpha))) .attr('stroke', 'red'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); div_output.innerHTML = points.map((x) => `${x[0]}: ${x[1]}`).join('<br>') + `<br>√α(Math.sqrt(${alpha})): ${Math.sqrt(alpha)}`; } else { div_output.innerHTML = '注意: α > 1, 0 < a1 < √α'; } }; inputs.forEach((input) => input.onchange = plot); plot(); }
1: 2
2: 2.3333333333333335
3: 2.2
4: 2.25
5: 2.230769230769231
6: 2.238095238095238
7: 2.235294117647059
8: 2.2363636363636363
9: 2.235955056179775
10: 2.236111111111111
√α(Math.sqrt(5)): 2.23606797749979
2: 2.3333333333333335
3: 2.2
4: 2.25
5: 2.230769230769231
6: 2.238095238095238
7: 2.235294117647059
8: 2.2363636363636363
9: 2.235955056179775
10: 2.236111111111111
√α(Math.sqrt(5)): 2.23606797749979
0 コメント:
コメントを投稿