学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第16章(確からしさをみる - 確率)、16.2(条件つき確率と確率の乗法定理)、確率と数列、問38.を取り組んでみる。
コード(Emacs)
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="n0">操作回数 n = </label> <input id="n0" type="number" min="0" step="1" value="9"> <label for="k0">白玉の増加個数 k = </label> <input id="k0" type="number" min="0" step="1" value="5"> <label for="m0">試行回数: </label> <input id="m0" type="number" min="1" step="1" value="500"> <br> <button id="run0">run</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample38.js"></script>
JavaScript
let pre0 = document.querySelector('#output0'), input_n = document.querySelector('#n0'), input_m = document.querySelector('#m0'), input_k = document.querySelector('#k0'), inputs = [input_n, input_m, input_k], btn0 = document.querySelector('#run0'), btn1 = document.querySelector('#clear0'), div0 = document.querySelector('#graph0'), width = 600, height = 600, padding = 50, p = (x) => pre0.textContent += x + '\n'; let range = (n) => { let result = []; for (let i = 0; i < n; i += 1) { result.push(i); } return result; }; let white = 0, black = 1; let f = (n) => { let balls = [white, black]; range(n).forEach(() => { let i = Math.floor(Math.random() * balls.length), ball = balls[i]; balls.splice(i, 1); balls.push(ball); balls.push(ball); }); return balls.filter((ball) => ball === white).length - 1; }; let output = () => { pre0.textContent = ''; p('38.'); let n = parseInt(input_n.value, 10), m = parseInt(input_m.value, 10), k = parseInt(input_k.value, 10), points = []; points = range(m).map((i) => { return [i + 1, range(i + 1) .map(() => f(n)) .filter((x) => x === k) .length / (i + 1)] }); let t = points[points.length - 1][1], result = 1 / (n + 1); p(t === result); p(t); p(result); p(Math.abs(t - result)); let xscale = d3.scaleLinear() .domain([1, m]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([0, 1]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', 1) .attr('fill', 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); }; inputs.forEach((input) => input.onchange = output); btn0.onclick = output; btn1.onclick = () => pre0.textContent = ''; output();
0 コメント:
コメントを投稿