Loading [MathJax]/jax/output/HTML-CSS/jax.js

2017年5月1日月曜日

学習環境

数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第16章(確からしさをみる - 確率)、16.2(条件つき確率と確率の乗法定理)、重複試行の確率、問32、33、34、35、36.を取り組んでみる。


  1. p=0.50.0625(1+2+2.5+20·0.125)=0.0625·8=0.5p=0.30.0081(1+2.8+4.9+20*0.343)=0.1260360.126

    1. (104)1210=10·9·8·74·3·2·1210=10·3·7·1210=105512

    2. (105)1210=10·9·8·7·65·4·3·2·1210=9·729=63512

    3. (100)1210+(101)1210+(102)1210+(103)1210=1210(1+10+45+120)=1761024=1164

    1. (52)(26)2·(46)3=10·835=80243

    2. 1((50)(26)0·(46)5+(51)(26)1·(46)4)=132+5·1635=132+8035=1112243=131243

    1. (84)(12)8=8·7·6·54·3·2·128=35128

    2. (83)(12)8=8·7·63·2·128=732

    3. (82)(12)8=8·72·128=764

  2. (n0)12n+(n2)12n+···=2n12n=12112=12

コード(Emacs)

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
n = <input id="n0" type="number" min="1" step="1" value="1000">
<br>
<button id="run0">run</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>
<script src="sample32.js"></script>    

JavaScript

let pre0 = document.querySelector('#output0'),
    input_n = document.querySelector('#n0'),
    btn0 = document.querySelector('#run0'),
    btn1 = document.querySelector('#clear0'),
    div0 = document.querySelector('#graph0'),
    width = 600,
    height = 600,
    padding = 50,
    p = (x) => pre0.textContent += x + '\n';

let range = (n) => {
    let result = [];
    for (let i = 0; i < n; i += 1) {
        result.push(i);
    }
    return result;
};

let output = () => {
    p('36-4. 表');
    let n = parseInt(input_n.value, 10),
        points = [];

    points = range(n).map((i) => {
        return [i + 1,
                range(i + 1)
                .map(() => Math.floor(Math.random() * 2))
                .filter((b) => b === 0)
                .length / (i + 1)]
    });
    
    let t = points[points.length - 1][1],
        result = 1 / 2;
    p(t ===  result);
    p(t);
    p(result);
    p(Math.abs(t - result));

    let xscale = d3.scaleLinear()
        .domain([1, n])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([0, 1])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', 1)
        .attr('fill', 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);
};

input_n.onchange = output;
btn0.onclick = output;
btn1.onclick = () => pre0.textContent = '';

output();
1002003004005006007008009001,0000.00.10.20.30.40.50.60.70.80.91.0
36-4. 表
false
0.493
0.5
0.007000000000000006
n =

0 コメント:

コメントを投稿