学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第16章(確からしさをみる - 確率)、16.2(条件つき確率と確率の乗法定理)、重複試行の確率、問32、33、34、35、36.を取り組んでみる。
p=0.50.0625(1+2+2.5+20·0.125)=0.0625·8=0.5p=0.30.0081(1+2.8+4.9+20*0.343)=0.1260360.126-
(104)1210=10·9·8·74·3·2·1210=10·3·7·1210=105512
(105)1210=10·9·8·7·65·4·3·2·1210=9·729=63512
(100)1210+(101)1210+(102)1210+(103)1210=1210(1+10+45+120)=1761024=1164
-
(52)(26)2·(46)3=10·835=80243
1−((50)(26)0·(46)5+(51)(26)1·(46)4)=1−32+5·1635=1−32+8035=1−112243=131243
-
(84)(12)8=8·7·6·54·3·2·128=35128
(83)(12)8=8·7·63·2·128=732
(82)(12)8=8·72·128=764
(n0)12n+(n2)12n+···=2n−12n=121−12=12
コード(Emacs)
HTML5
<div id="graph0"></div> <pre id="output0"></pre> n = <input id="n0" type="number" min="1" step="1" value="1000"> <br> <button id="run0">run</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample32.js"></script>
JavaScript
let pre0 = document.querySelector('#output0'), input_n = document.querySelector('#n0'), btn0 = document.querySelector('#run0'), btn1 = document.querySelector('#clear0'), div0 = document.querySelector('#graph0'), width = 600, height = 600, padding = 50, p = (x) => pre0.textContent += x + '\n'; let range = (n) => { let result = []; for (let i = 0; i < n; i += 1) { result.push(i); } return result; }; let output = () => { p('36-4. 表'); let n = parseInt(input_n.value, 10), points = []; points = range(n).map((i) => { return [i + 1, range(i + 1) .map(() => Math.floor(Math.random() * 2)) .filter((b) => b === 0) .length / (i + 1)] }); let t = points[points.length - 1][1], result = 1 / 2; p(t === result); p(t); p(result); p(Math.abs(t - result)); let xscale = d3.scaleLinear() .domain([1, n]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([0, 1]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', 1) .attr('fill', 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); }; input_n.onchange = output; btn0.onclick = output; btn1.onclick = () => pre0.textContent = ''; output();
36-4. 表 false 0.493 0.5 0.007000000000000006n =
0 コメント:
コメントを投稿