学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第17章(関数の変化をとらえる - 関数の極限と微分法)、17.3(導関数とその計算)、曲線の接線の方程式、問35.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Derivative, solve x, x0 = symbols('x x0') k = symbols('k', positive=True) y = k / x pprint(y) px = x0 py = y.subs({x: x0}) print('P') pprint(dict(x=px, y=py)) y0 = y.subs({x: x0}) y1 = Derivative(y, x) pprint(y1) y1 = y1.doit() pprint(y1) f = y1.subs({x: x0}) * (x - x0) + y0 pprint(f) qx = solve(f, x)[0] qy = 0 print('Q') pprint(dict(x=qx, y=qy)) rx = 0 ry = f.subs({x: rx}) print('R') pprint(dict(x=rx, y=ry)) print('(1)') print(px == (qx + rx) / 2 and py == (qy + ry) / 2) print('(2)') pprint(abs(1 / 2 * qx * ry))
入出力結果(Terminal, IPython)
$ ./sample35.py k ─ x P ⎧ k ⎫ ⎨x: x₀, y: ──⎬ ⎩ x₀⎭ ∂ ⎛k⎞ ──⎜─⎟ ∂x⎝x⎠ -k ─── 2 x k k⋅(x - x₀) ── - ────────── x₀ 2 x₀ Q {x: 2⋅x₀, y: 0} R ⎧ 2⋅k⎫ ⎨x: 0, y: ───⎬ ⎩ x₀⎭ (1) True (2) 2.0⋅k $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> <label for="k0">k = </label> <input id="k0" type="number" min="0" value="5"> <label for="x0">x0 = </label> <input id="x0" type="number" value="2"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample35.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_k = document.querySelector('#k0'), input_x0 = document.querySelector('#x0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_k, input_x0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), k = parseFloat(input_k.value), x0 = parseFloat(input_x0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2 || k === 0 || x0 === 0) { return; } let points = [], f = (x) => k / x, f1 = (x) => -k / x ** 2, y0 = f(x0), g = (x) => f1(x0) * (x - x0) + y0; for (let x = x1; x <= x2; x += dx) { let y = f(x); if (Math.abs(y) < Infinity) { points.push([x, y]); } } let lines = [[x1, g(x1), x2, g(x2)]]; let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d, i) => i <= 1 ? 'black' : 'blue'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', 'red'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(Math.abs(1 / 2 * 2 * x0 * 2 * k / x0)); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿