学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第17章(関数の変化をとらえる - 関数の極限と微分法)、17.2(関数の連続性)、区間における連続、問14、15、16.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import Symbol, sin, tan, Limit, S, pprint, pi x = Symbol('x', real=True) exprs = [(1 / sin(2 * x), 5 * pi / 2), (tan(x / 2), 5 * pi), (1 / (4 ** x - 2), 1 / 2), (2 ** (1 / x), 0)] for i, (expr, x0) in enumerate(exprs, 1): print('({0})'.format(i)) l1 = Limit(expr, x, x0, dir='+') pprint(l1) pprint(l1.doit()) l2 = Limit(expr, x, x0, dir='-') pprint(l2) pprint(l2.doit()) print(l1.doit() == l2.doit())
入出力結果(Terminal, IPython)
$ ./sample14.py (1) 1 lim ──────── 5⋅π sin(2⋅x) x─→───⁺ 2 -∞ 1 lim ──────── 5⋅π sin(2⋅x) x─→───⁻ 2 ∞ False (2) ⎛x⎞ lim tan⎜─⎟ x─→5⋅π⁺ ⎝2⎠ -∞ ⎛x⎞ lim tan⎜─⎟ x─→5⋅π⁻ ⎝2⎠ ∞ False (3) 1 lim ────── x─→0.5⁺ x 4 - 2 ∞ 1 lim ────── x─→0.5⁻ x 4 - 2 -∞ False (4) x ___ lim ╲╱ 2 x─→0⁺ ∞ x ___ lim ╲╱ 2 x─→0⁻ 0 False $
コード(Emacs)
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="1"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.01"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-2"> <label for="y2">y2 = </label> <input id="y2" type="number" value="2"> <br> <label for="n0">n = </label> <input id="n0" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample14.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_n = document.querySelector('#n0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_n], p = (x) => pre0.textContent += x + '\n'; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), n = parseInt(input_n.value, 10); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2 || n < 1) { return; } let points = [], f1 = (x) => (Math.abs(x) ** n - 1) / (Math.abs(x) ** n + 1), f2 = (x) => (x ** (2 * n - 1) + 1) / (x ** (2 * n) + 1), f3 = (x) => Math.abs(Math.sin(x)) ** n, f4 = (x) => Math.sin(x) / (1 + Math.sin(x) ** (2 * n)) for (let x = x1; x <= x2; x += dx) { let y = f1(x); if (-Infinity < y && y < Infinity) { points.push([x, f1(x)]); } } let t1 = points.length; for (let x = x1; x <= x2; x += dx) { let y = f2(x); if (-Infinity < y && y < Infinity) { points.push([x, f2(x)]); } } let t2 = points.length; for (let x = x1; x <= x2; x += dx) { let y = f3(x); if (-Infinity < y && y < Infinity) { points.push([x, f3(x)]); } } let t3 = points.length; for (let x = x1; x <= x2; x += dx) { let y = f4(x); if (-Infinity < y && y < Infinity) { points.push([x, f4(x)]); } } let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d, i) => i < t1 ? 'red' : i < t2 ? 'green' : i < t3 ? 'blue' : 'orange'); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]]) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', 'black'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿