学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第17章(関数の変化をとらえる - 関数の極限と微分法)、17.3(導関数とその計算)、積および商の微分、問30.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import symbols, Derivative, pprint, factor x = symbols('x') print('30.') exprs = [ (3, 2 - x), (x, x ** 2 + 1), (x ** 2 + 2, 3 * x + 4), (x ** 2 - 2 * x + 6, x ** 2 + x + 2), (x ** 2 + 3, x ** 3 - 4), ((3 * x + 2) ** 3, (2 * x - 1) ** 2) ] for i, (num, den) in enumerate(exprs, 1): print('({0})'.format(i)) expr = num / den pprint(expr) d = Derivative(expr, x) pprint(d) d = d.doit() pprint(d) pprint(factor(d))
入出力結果(Terminal, IPython)
$ ./sample30.py 30. (1) 3 ────── -x + 2 d ⎛ 3 ⎞ ──⎜──────⎟ dx⎝-x + 2⎠ 3 ───────── 2 (-x + 2) 3 ──────── 2 (x - 2) (2) x ────── 2 x + 1 d ⎛ x ⎞ ──⎜──────⎟ dx⎜ 2 ⎟ ⎝x + 1⎠ 2 2⋅x 1 - ───────── + ────── 2 2 ⎛ 2 ⎞ x + 1 ⎝x + 1⎠ -(x - 1)⋅(x + 1) ───────────────── 2 ⎛ 2 ⎞ ⎝x + 1⎠ (3) 2 x + 2 ─────── 3⋅x + 4 ⎛ 2 ⎞ d ⎜ x + 2⎟ ──⎜───────⎟ dx⎝3⋅x + 4⎠ ⎛ 2 ⎞ 2⋅x 3⋅⎝x + 2⎠ ─────── - ────────── 3⋅x + 4 2 (3⋅x + 4) 2 3⋅x + 8⋅x - 6 ────────────── 2 (3⋅x + 4) (4) 2 x - 2⋅x + 6 ──────────── 2 x + x + 2 ⎛ 2 ⎞ d ⎜x - 2⋅x + 6⎟ ──⎜────────────⎟ dx⎜ 2 ⎟ ⎝ x + x + 2 ⎠ ⎛ 2 ⎞ (-2⋅x - 1)⋅⎝x - 2⋅x + 6⎠ 2⋅x - 2 ───────────────────────── + ────────── 2 2 ⎛ 2 ⎞ x + x + 2 ⎝x + x + 2⎠ 2 3⋅x - 8⋅x - 10 ─────────────── 2 ⎛ 2 ⎞ ⎝x + x + 2⎠ (5) 2 x + 3 ────── 3 x - 4 ⎛ 2 ⎞ d ⎜x + 3⎟ ──⎜──────⎟ dx⎜ 3 ⎟ ⎝x - 4⎠ 2 ⎛ 2 ⎞ 3⋅x ⋅⎝x + 3⎠ 2⋅x - ───────────── + ────── 2 3 ⎛ 3 ⎞ x - 4 ⎝x - 4⎠ ⎛ 3 ⎞ -x⋅⎝x + 9⋅x + 8⎠ ────────────────── 2 ⎛ 3 ⎞ ⎝x - 4⎠ (6) 3 (3⋅x + 2) ────────── 2 (2⋅x - 1) ⎛ 3⎞ d ⎜(3⋅x + 2) ⎟ ──⎜──────────⎟ dx⎜ 2⎟ ⎝(2⋅x - 1) ⎠ 2 3 9⋅(3⋅x + 2) 4⋅(3⋅x + 2) ──────────── - ──────────── 2 3 (2⋅x - 1) (2⋅x - 1) 2 (3⋅x + 2) ⋅(6⋅x - 17) ───────────────────── 3 (2⋅x - 1) $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample30.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], f = (x) => (3 * x + 2) ** 3 / (2 * x - 1) ** 2 for (let x = x1; x <= x2; x += dx) { let y = f(x); if (Math.abs(y) < Infinity) { points.push([x, y]); } } let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', 'green'); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]]) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', 'black'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿