2017年5月9日火曜日

学習環境

ラング線形代数学(上)(S.ラング (著)、芹沢 正三 (翻訳)、ちくま学芸文庫)の2章(ベクトル空間)、3(基底)、練習問題1.を取り組んでみる。


    1. a1(1,1,1)+a2(0,1,1)=0a1=0a1+a2=0a2=0a1a2=00=0

    2. a1(1,0)+a2(1,1)=0a1+a2=0a2=0a1=0

    3. a1=0a1=0a1+a2=0a2=02a2=0

    4. 2a1+a2=0a1=0a1=0a2=0

    5. a1π=0a1=0a2=0

    6. a1+a2=02a1+3a2=0a2=a12a13a1=0a1=0a1=0a2=0

    7. a1+a2=0a1+a2+a3=0a2a3=0a3=0a2=0a1=0

    8. a3=0a1+2a2+5a3=0a1+2a2=0a1+a2+3a3=0a1+a2=0a2=0a1=0

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import Symbol, solve, pi

a1 = Symbol('a1')
a2 = Symbol('a2')
a3 = Symbol('a3')

for (x1, x2, x3), (y1, y2, y3) in [((1, 1, 1), (0, 1, -1)),
                                   ((-1, 1, 0), (0, 1, 2))]:
    expr1 = a1 * x1 + a2 * y1
    expr2 = a1 * x2 + a2 * y2
    expr3 = a1 * x3 + a2 * y3
    print(solve((expr1, expr2, expr3), dict=True))

for (x1, x2), (y1, y2) in [((1, 0), (1, 1)),
                           ((2, -1), (1, 0)),
                           ((pi, 0), (0, 1)),
                           ((1, 2), (1, 3))]:

    expr1 = a1 * x1 + a2 * y1
    expr2 = a1 * x2 + a2 * y2
    print(solve((expr1, expr2), dict=True))

for (x1, x2, x3), (y1, y2, y3), (z1, z2, z3) in [
        ((1, 1, 0), (1, 1, 1), (0, 1, -1)),
        ((0, 1, 1), (0, 2, 1), (1, 5, 3))]:
    expr1 = a1 * x1 + a2 * y1 + a3 * z1
    expr2 = a1 * x2 + a2 * y2 + a3 * z2
    expr3 = a1 * x3 + a2 * y3 + a3 * z3
    print(solve((expr1, expr2, expr3), dict=True))

入出力結果(Terminal, IPython)

$ ./sample1.py 
[{a2: 0, a1: 0}]
[{a2: 0, a1: 0}]
[{a2: 0, a1: 0}]
[{a2: 0, a1: 0}]
[{a2: 0, a1: 0}]
[{a2: 0, a1: 0}]
[{a2: 0, a3: 0, a1: 0}]
[{a1: 0, a2: 0, a3: 0}]
$

0 コメント:

コメントを投稿