学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門〈1〉(松坂 和夫(著)、岩波書店)の第5章(各種の初等関数)、5.4(三角関数(続き)、逆三角関数)、問題2.を取り組んでみる。
nコード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import Symbol, Limit, S, sin, cos, pi, solve, product, pprint θ = Symbol('θ', positive=True) i = Symbol('i') n = Symbol('n', positive=True) expr = product(cos(θ / 2**i), (i, 1, n)) pprint(expr) try: l = Limit(expr, n, S.Infinity) pprint(l) result = l.doit() pprint(result) except Exception as err: print(type(err), err)
入出力結果(Terminal, IPython)
$ ./sample2.py n ┬────┬ │ │ ⎛ -i ⎞ │ │ cos⎝2 ⋅θ⎠ │ │ i = 1 n ┬────┬ │ │ ⎛ -i ⎞ lim │ │ cos⎝2 ⋅θ⎠ n─→∞│ │ i = 1 <class 'NotImplementedError'> $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="theta0">θ = </label> <input id="theta0" type="number" min="0.001" step="0.001" max="1.5707963267948965" value="1.2"> <label for="n0">n = </label> <input id="n0" type="number" min="1" step="1" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample2.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_theta = document.querySelector('#theta0'), input_n = document.querySelector('#n0'), inputs = [input_theta, input_n], p = (x) => pre0.textContent += x + '\n'; let draw = () => { pre0.textContent = ''; let theta = parseFloat(input_theta.value), n = parseInt(input_n.value, 10), l = Math.sin(theta) / theta; let f = (n) => { let result = 1; for (let i = 1; i <= n; i += 1) { result *= Math.cos(theta / 2 ** i); } return result; }; let points = []; for (let i = 1; i <= n; i += 1) { points.push([i, f(i)]); } let ys = points.map((o) => o[1]), d1 = Math.min(l - 0.1, ...ys), d2 = Math.max(l + 0.1, ...ys); let xscale = d3.scaleLinear() .domain([0, n]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([d1, d2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', 2) .attr('fill', 'green'); svg.selectAll('line') .data([[0, l, n, l]]) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', 'blue'); svg.append('g') .attr('transform', `translate(0, ${yscale(0)})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${xscale(0)}, 0)`) .call(yaxis); } inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿