学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第17章(関数の変化をとらえる - 関数の極限と微分法)、17.1(関数と極限)、極限の応用問題、問11.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import Symbol, solve, Limit, pprint x = Symbol('x') y = Symbol('y') p = Symbol('p') h = Symbol('h', nonzero=True) r = Symbol('r', positive=True) circle = x ** 2 + (y - p) ** 2 - r ** 2 expr1 = circle.subs({x: h, y: h**2}) expr2 = circle.subs({x: -h, y: h**2}) expr3 = circle.subs({x: 0, y: 0}) pprint(Limit(solve((expr1, expr2, expr3), p, r, dict=True)[0][p], h, 0).doit())
入出力結果(Terminal, IPython)
$ ./sample11.py 1/2 $
コード(Emacs)
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="x1">ε = </label> <input id="e0" type="number" min="0.001" value="0.001"> <label for="x1">x1 = </label> <input id="x1" type="number" value="-2"> <label for="x2">x2 = </label> <input id="x2" type="number" value="2"> <label for="h0">h = </label> <input id="h0" type="number" step="0.01"value="1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample11.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_e = document.querySelector('#e0'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_h = document.querySelector('#h0'), inputs = [input_e, input_x1, input_x2, input_h], p = (x) => pre0.textContent += x + '\n'; let draw = () => { pre0.textContent = ''; let epsilon = parseFloat(input_e.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), h = parseFloat(input_h.value); if (h === 0) { return; } let points = [[0, (1 + h ** 2) / 2]]; for (let x = x1; x <= x2; x += epsilon) { points.push([x, x ** 2]); } let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let ys = points.map((a) => a[1]); let yscale = d3.scaleLinear() .domain([x1, x2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', (d, i) => i === 0 ? xscale(d[1]) - xscale(0) : 1) .attr('fill', (d, i) => i === 0 ? 'rgba(0, 255, 0, 0)' : 'blue') .attr('stroke', (d, i) => i === 0 ? 'green' : 'blue'); svg.append('g') .attr('transform', `translate(0, ${yscale(0)})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${xscale(0)}, 0)`) .call(yaxis); } inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿