学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門〈2〉(松坂 和夫(著)、岩波書店)の第6章(関数の近似、テイラーの定理)、6.1(テイラーの定理)、問題4.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Derivative, plot, solve print('(a)') x = symbols('x', positive=True) a = 1 b = 2 f = x ** 2 - 2 f1 = Derivative(f, x, 1).doit() f2 = Derivative(f, x, 2).doit() delta1 = 1 delta2 = 3 p = plot(f, f1, f2, delta1, delta2, (x, a, b), show=False, legend=True) p.save('sample4.svg') s = solve(f, x) pprint(s) x0 = s[0] print('(b)') def bn(n): if n == 1: return b b0 = bn(n - 1) return b0 - f.subs({x: b0}) / f1.subs({x: b0}) for i in range(1, 10): print('n = {0}: {1}, {2}, {3}'.format( i, float(bn(i)), float(bn(i) - x0), bn(i + 1) < bn(i)))
入出力結果(Terminal, IPython)
$ ./sample4.py (a) [√2] (b) n = 1: 2.0, 0.585786437626905, True n = 2: 1.5, 0.08578643762690495, True n = 3: 1.4166666666666667, 0.0024531042935716178, True n = 4: 1.4142156862745099, 2.12390141475512e-06, True n = 5: 1.4142135623746899, 1.5948618246068547e-12, True n = 6: 1.4142135623730951, 8.992928321650453e-25, True n = 7: 1.4142135623730951, 2.859283843333951e-49, True n = 8: 1.4142135623730951, 2.8904771932153646e-98, True n = 9: 1.4142135623730951, -1.512731216738015e-123, True $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-2"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> <label for="n0">n = </label> <input id="n0" type="number" min="1" step="1" value="1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample4.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_n = document.querySelector('#n0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_n], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => x ** 2 - 2, f1 = (x) => 2 * x, f2 = (x) => 2, a = 1, b = 4, bn = (n) => { if (n === 1) { return b; } let b0 = bn(n - 1); return b0 - f(b0) / f1(b0); }, g = (f, f1, x0) => (x) => f1(x0) * (x - x0) + f(x0); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), n = parseInt(input_n.value, 10); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2 || n < 1) { return; } let points = [], fg = g(f, f1, bn(n)); for (let x = x1; x <= x2; x += dx) { let y = f(x); if (Math.abs(x) < Infinity) { points.push([x, y]); } } let t = points.length; for (let x = x1; x <= x2; x += dx) { let y = fg(x); if (Math.abs(x) < Infinity) { points.push([x, y]); } } let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d, i) => i < t ? 'green' : 'blue'); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]]) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', 'black'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(`b_${n} = ${bn(n)}`); p(`√2 = ${Math.sqrt(2)}`); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿