学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第5章(平均値の定理)、1(最大点と最小点の定理)、練習問題1-13.を取り組んでみる。
2x−2=0x=1
4x−3=0x=34
6x−1=0x=16
−2x+2=0x=1
−4x+3=0x=34
3x2=0x=0
3x2−3=0x2=1x=±1
cosx−sinx=0tanx=1x=π4+nπ
−sinx=0sinx=0x=nπ
cosx=0x=π2+nπ正方形の1辺の長さをx 、高さをy 、箱の体積をVとする。
C=x2+4xyV=x2yy=−x4+C4xV=−x34+C4x=−x4(x2−C)V'=−34x2+C4−34x2+C4=0−3x2+C=0x=√C3y=−14√C3+C4√C3=−√C4√3+C√34√C=−C+3C4√3C=2C4√3C=√C2√3
底面の半径をr 、高さをh とする。
C=h·2rπ+πr2V=πr2hh=C−πr22πrV=πr2C−πr22πr=r2(C−πr2)=Cr−πr32V'=C−3πr22C−3πr22=0r=√C3πh=C−πr22πr=C−πC3π2π√C3π=C−C32√πC3=2√C6√π3=√C3π-
C=2x2+4xyV=x2yy=C−2x24xV=x(C−2x2)4V'=14(C−6x2)C−6x2=0x=√C6y=C−2C64√C6=23C·14√6C=√C6
C=h·2rπ+2πr2V=πr2hh=C−2πr22πrV=πr2C−2πr22πr=Cr−2πr32V'=C−6πr22C−6πr2=0r=√C6πh=C−2πC6π2π√C6π=C−C32√Cπ6=2C√63·2√Cπ=√2C3π
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, sin, cos, solve, Derivative, plot x = symbols('x') fs = [x ** 2 - 2 * x + 5, sin(x) + cos(x)] for i, f in enumerate(fs): d = Derivative(f, x, 1) f1 = d.doit() pprint(d) pprint(f1) pprint(solve(f1, x, dict=True)) p = plot(f, f1, show=False, legend=True) for i, color in enumerate(['green', 'blue']): p[i].line_color = color p.save('sample1_{}.svg'.format(i)) print()
入出力結果(Terminal, IPython)
$ ./sample1.py d ⎛ 2 ⎞ ──⎝x - 2⋅x + 5⎠ dx 2⋅x - 2 [{x: 1}] d ──(sin(x) + cos(x)) dx -sin(x) + cos(x) ⎡⎧ -3⋅π ⎫ ⎧ π⎫⎤ ⎢⎨x: ─────⎬, ⎨x: ─⎬⎥ ⎣⎩ 4 ⎭ ⎩ 4⎭⎦ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="x0">x0 = </label> <input id="x0" type="number" step="0.01" value="1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample1.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_x0 = document.querySelector('#x0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_x0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => Math.sin(x) + Math.cos(x), f1 = (x) => Math.cos(x) - Math.sin(x), g = (x0) => (x) => f1(x0) * (x - x0) + f(x0); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), x0 = parseFloat(input_x0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return;n } let points = [], lines = []; [[f, 'red'], [f1, 'green']] .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); [[g(x0), 'blue']] .forEach((o) => { let [f, color] = o; lines.push([x1, f(x1), x2, f(x2), color]) }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(`f1(${x0}) = ${f1(x0)}`); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
f1(1) = -0.30116867893975674
0 コメント:
コメントを投稿