Loading [MathJax]/jax/output/CommonHTML/jax.js

2017年6月15日木曜日

学習環境

解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第5章(平均値の定理)、1(最大点と最小点の定理)、練習問題1-13.を取り組んでみる。


  1. 2x2=0x=1

  2. 4x3=0x=34

  3. 6x1=0x=16

  4. 2x+2=0x=1

  5. 4x+3=0x=34

  6. 3x2=0x=0

  7. 3x23=0x2=1x=±1

  8. cosxsinx=0tanx=1x=π4+nπ

  9. sinx=0sinx=0x=nπ

  10. cosx=0x=π2+nπ

  11. 正方形の1辺の長さをx 、高さをy 、箱の体積をVとする。

    C=x2+4xyV=x2yy=x4+C4xV=x34+C4x=x4(x2C)V'=34x2+C434x2+C4=03x2+C=0x=C3y=14C3+C4C3=C43+C34C=C+3C43C=2C43C=C23

  12. 底面の半径をr 、高さをh とする。

    C=h·2rπ+πr2V=πr2hh=Cπr22πrV=πr2Cπr22πr=r2(Cπr2)=Crπr32V'=C3πr22C3πr22=0r=C3πh=Cπr22πr=CπC3π2πC3π=CC32πC3=2C6π3=C3π

    1. C=2x2+4xyV=x2yy=C2x24xV=x(C2x2)4V'=14(C6x2)C6x2=0x=C6y=C2C64C6=23C·146C=C6

    2. C=h·2rπ+2πr2V=πr2hh=C2πr22πrV=πr2C2πr22πr=Cr2πr32V'=C6πr22C6πr2=0r=C6πh=C2πC6π2πC6π=CC32Cπ6=2C63·2Cπ=2C3π

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, sin, cos, solve, Derivative, plot

x = symbols('x')
fs = [x ** 2 - 2 * x + 5, sin(x) + cos(x)]
for i, f in enumerate(fs):
    d = Derivative(f, x, 1)
    f1 = d.doit()
    pprint(d)
    pprint(f1)
    pprint(solve(f1, x, dict=True))
    p = plot(f, f1, show=False, legend=True)
    for i, color in enumerate(['green', 'blue']):
        p[i].line_color = color
    p.save('sample1_{}.svg'.format(i))
    print()

入出力結果(Terminal, IPython)

$ ./sample1.py
d ⎛ 2          ⎞
──⎝x  - 2⋅x + 5⎠
dx              
2⋅x - 2
[{x: 1}]

d                  
──(sin(x) + cos(x))
dx                 
-sin(x) + cos(x)
⎡⎧   -3⋅π ⎫  ⎧   π⎫⎤
⎢⎨x: ─────⎬, ⎨x: ─⎬⎥
⎣⎩     4  ⎭  ⎩   4⎭⎦

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">
<br>
<label for="x0">x0 = </label>
<input id="x0" type="number" step="0.01" value="1">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample1.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_x0 = document.querySelector('#x0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
             input_x0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f = (x) => Math.sin(x) + Math.cos(x),
    f1 = (x) => Math.cos(x) - Math.sin(x),
    g = (x0) => (x) => f1(x0) * (x - x0) + f(x0);

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        x0 = parseFloat(input_x0.value);
        
    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;n
    }
    let points = [],
        lines = [];

    [[f, 'red'], [f1, 'green']]
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                if (Math.abs(y) < Infinity) {
                    points.push([x, y, color]);
                }
            }
        });
    [[g(x0), 'blue']]
        .forEach((o) => {
            let [f, color] = o;

            lines.push([x1, f(x1), x2, f(x2), color])
        });
                 
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);
    p(`f1(${x0}) = ${f1(x0)}`);
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
-5-4-3-2-1012345-5-4-3-2-1012345
f1(1) = -0.30116867893975674



0 コメント:

コメントを投稿