2017年6月20日火曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.2(関数の増減の判定およびその応用)、不等式・方程式への応用、問10、11、12.を取り組んでみる。


  1. f( x )= e x x1 f'( x )= e x 1 e x 1=0 x=0 f( 0 )=101=0 1+x< e x 1x< e x 1 1x > e x 1+x< e x < 1 1x

  2. f 0 ( x )= e x 1 f 0 '( x )= e x >0 f 0 ( 0 )=0 x<0 f 0 ( x )<0 x>0 f 0 ( x )>0 f 1 ( x )= e x ( 1+ x 1! )= e x 1x f 1 '( x )= e x 1 f 1 '( 0 )=1 x<0 f ' 1 ( x )<0 x>0 f ' 1 ( x )>0 f 1 ( 0 )=110=0 f 1 ( x )>0 f n '( x )= f n1 ( x ) f 2k '( x )= f 2k1 ( x ) f 2k '( x )>0 f 2k ( 0 )=0 x<0 f 2k ( x )<0 x>0 f 2k ( x )>0 f 2k+1 '( x )= f 2k ( x ) x<0 f 2k+1 '( x )<0 x>0 f 2k+1 '( x )>0 f 2k+1 ( 0 )=0 f 2k+1 ( x )>0

  3. g( x )=f( x ) e x g'( x )=f'( x ) e x f( x ) e x = e x ( f'( x )f( x ) ) g( 0 )=f( 0 ) e 0 =1 x>0 g'( x )>0 g( x )>1 f( x ) e x >1 f( x )> e x

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, exp, plot

print('10.')
x = symbols('x')
p = plot(1 + x, exp(x), 1 / (1 - x),
         (x, 0.1, 0.9), show=False, legend=True)

for i, color in enumerate(['red', 'green', 'blue']):
    p[i].line_color = color

p.save('sample10.svg')

入出力結果(Terminal, IPython)

$ ./sample10.py
10.
$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-10">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="10">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-10">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="10">
<br>
<label for="n0">n = </label>
<input id="n0" type="number" min="0" step="1" value="0">



<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample10.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_n0 = document.querySelector('#n0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_n0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let factorial = (n) => range(1, n + 1).reduce((x, y) => x * y, 1),
    term = (k) => (x) => x ** k / factorial(k),
    gn = (n) => (x) =>
    range(0, n + 1).reduce((prev, next) => prev + term(next)(x), 0);

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        n0 = parseFloat(input_n0.value);
    
    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }

    let points = [],        
        lines = [],
        g = gn(n0),
        f = (x) => Math.exp(x) - g(x),
        fns = [[f, 'green']];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);
    p(fns);
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








0 コメント:

コメントを投稿