学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.2(関数の増減の判定およびその応用)、最大・最小問題、問21、22.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Pow, plot, exp, Derivative, solve x = symbols('x', real=True) p = plot(Pow(x, 3), show=False) p.save('sample21.svg') f = (x - (x + exp(x)) / 2) ** 2 + (exp(x) - (x + exp(x)) / 2) ** 2 d = Derivative(f, x) pprint(d) pprint(d.expand()) f1 = d.doit() pprint(f1) # f1 = f1.expand() pprint(f1.expand()) s = solve(f1, x) pprint(s) for x0 in s: for n in range(-1, 2): pprint(x0 + n) pprint(f1) pprint(f1.expand()) result = f1.subs({x: x0 + n}) pprint(result) pprint(result.is_positive) pprint(result.is_zero) pprint(result.is_negative) pprint(exp(x0 + n)) print()
入出力結果(Terminal, IPython)
$ ./sample21.py ⎛ 2 2⎞ ⎜⎛ x⎞ ⎛ x⎞ ⎟ d ⎜⎜ x ℯ ⎟ ⎜x ℯ ⎟ ⎟ ──⎜⎜- ─ + ──⎟ + ⎜─ - ──⎟ ⎟ dx⎝⎝ 2 2 ⎠ ⎝2 2 ⎠ ⎠ ⎛ 2 2⋅x⎞ d ⎜x x ℯ ⎟ ──⎜── - x⋅ℯ + ────⎟ dx⎝2 2 ⎠ ⎛ x⎞ ⎛ x⎞ ⎜ x ℯ ⎟ ⎛ x ⎞ ⎜x ℯ ⎟ ⎛ x ⎞ ⎜- ─ + ──⎟⋅⎝ℯ - 1⎠ + ⎜─ - ──⎟⋅⎝- ℯ + 1⎠ ⎝ 2 2 ⎠ ⎝2 2 ⎠ x 2⋅x x - x⋅ℯ + x + ℯ - ℯ [0] -1 ⎛ x⎞ ⎛ x⎞ ⎜ x ℯ ⎟ ⎛ x ⎞ ⎜x ℯ ⎟ ⎛ x ⎞ ⎜- ─ + ──⎟⋅⎝ℯ - 1⎠ + ⎜─ - ──⎟⋅⎝- ℯ + 1⎠ ⎝ 2 2 ⎠ ⎝2 2 ⎠ x 2⋅x x - x⋅ℯ + x + ℯ - ℯ ⎛ -1⎞ ⎛ -1 ⎞ ⎜ 1 ℯ ⎟ ⎛ -1 ⎞ ⎛ -1⎞ ⎜ℯ 1⎟ ⎜- ─ - ───⎟⋅⎝- ℯ + 1⎠ + ⎝-1 + ℯ ⎠⋅⎜─── + ─⎟ ⎝ 2 2 ⎠ ⎝ 2 2⎠ False False True -1 ℯ 0 ⎛ x⎞ ⎛ x⎞ ⎜ x ℯ ⎟ ⎛ x ⎞ ⎜x ℯ ⎟ ⎛ x ⎞ ⎜- ─ + ──⎟⋅⎝ℯ - 1⎠ + ⎜─ - ──⎟⋅⎝- ℯ + 1⎠ ⎝ 2 2 ⎠ ⎝2 2 ⎠ x 2⋅x x - x⋅ℯ + x + ℯ - ℯ 0 False True False 1 1 ⎛ x⎞ ⎛ x⎞ ⎜ x ℯ ⎟ ⎛ x ⎞ ⎜x ℯ ⎟ ⎛ x ⎞ ⎜- ─ + ──⎟⋅⎝ℯ - 1⎠ + ⎜─ - ──⎟⋅⎝- ℯ + 1⎠ ⎝ 2 2 ⎠ ⎝2 2 ⎠ x 2⋅x x - x⋅ℯ + x + ℯ - ℯ ⎛ ℯ 1⎞ ⎛ 1 ℯ⎞ (-ℯ + 1)⋅⎜- ─ + ─⎟ + (-1 + ℯ)⋅⎜- ─ + ─⎟ ⎝ 2 2⎠ ⎝ 2 2⎠ True False False ℯ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="x0">x = </label> <input id="x0" type="number" step="0.1" value="0"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample21.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_x0 = document.querySelector('#x0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_x0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => Math.exp(x), g = (x) => x, h = (x) => Math.log(x); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), x0 = parseFloat(input_x0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], a = (x0 + Math.exp(x0)) / 2, lines = [[x0, f(x0), a, a, 'brown']], fns = [[f, 'red'], [h, 'green']], fns1 = [[g, 'blue']]; fns.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns1.forEach((o) => { let [fn, color] = o; lines.push([x1, fn(x1), x2, fn(x2), color]); }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(fns.join('\n')); p(fns1.join('\n')); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿