学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.2(関数の増減の判定およびその応用)、最大・最小問題、問23.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, sqrt, Derivative, solve p, q, a, x = symbols('p q a x', real=True) f = sqrt(x ** 2 + p ** 2) + sqrt((a - x) ** 2 + q ** 2) d = Derivative(f, x, 1) f1 = d.doit() pprint(d) pprint(f1) x xs = solve(f1, x) pprint(xs) for x0 in xs + [0, a]: pprint(x0) for func in [f, f1]: pprint(func.subs({x: x0})) print() print()
入出力結果(Terminal, IPython)
$ ./sample23.py ⎛ _________ _______________⎞ ∂ ⎜ ╱ 2 2 ╱ 2 2 ⎟ ──⎝╲╱ p + x + ╲╱ q + (a - x) ⎠ ∂x x -a + x ──────────── + ────────────────── _________ _______________ ╱ 2 2 ╱ 2 2 ╲╱ p + x ╲╱ q + (a - x) ⎡ a⋅p a⋅p ⎤ ⎢─────, ─────⎥ ⎣p - q p + q⎦ a⋅p ───── p - q _____________________ _______________ ╱ 2 ╱ 2 2 ╱ 2 ⎛ a⋅p ⎞ ╱ a ⋅p 2 ╱ q + ⎜- ───── + a⎟ + ╱ ──────── + p ╲╱ ⎝ p - q ⎠ ╱ 2 ╲╱ (p - q) a⋅p ───── - a a⋅p p - q ───────────────────────────── + ────────────────────────── _______________ _____________________ ╱ 2 2 ╱ 2 ╱ a ⋅p 2 ╱ 2 ⎛ a⋅p ⎞ (p - q)⋅ ╱ ──────── + p ╱ q + ⎜- ───── + a⎟ ╱ 2 ╲╱ ⎝ p - q ⎠ ╲╱ (p - q) a⋅p ───── p + q _____________________ _______________ ╱ 2 ╱ 2 2 ╱ 2 ⎛ a⋅p ⎞ ╱ a ⋅p 2 ╱ q + ⎜- ───── + a⎟ + ╱ ──────── + p ╲╱ ⎝ p + q ⎠ ╱ 2 ╲╱ (p + q) a⋅p ───── - a a⋅p p + q ───────────────────────────── + ────────────────────────── _______________ _____________________ ╱ 2 2 ╱ 2 ╱ a ⋅p 2 ╱ 2 ⎛ a⋅p ⎞ (p + q)⋅ ╱ ──────── + p ╱ q + ⎜- ───── + a⎟ ╱ 2 ╲╱ ⎝ p + q ⎠ ╲╱ (p + q) 0 _________ ╱ 2 2 ╲╱ a + q + │p│ -a ──────────── _________ ╱ 2 2 ╲╱ a + q a _________ ╱ 2 2 ╲╱ a + p + │q│ a ──────────── _________ ╱ 2 2 ╲╱ a + p $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="0"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="0"> <label for="y2">y2 = </label> <input id="y2" type="number" value="20"> <br> <label for="p0">p = </label> <input id="p0" type="number" min="0" value="5"> <label for="q0">q = </label> <input id="q0" type="number" min="0" value="10"> <label for="a0">a0 = </label> <input id="a0" type="number" min="0" value="10"> <label for="x0">x0 = </label> <input id="x0" type="number" min="0" step="0.1" value="2"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample23.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_p0 = document.querySelector('#p0'), input_q0 = document.querySelector('#q0'), input_a0 = document.querySelector('#a0'), input_x0 = document.querySelector('#x0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_p0, input_q0, input_a0, input_x0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => Math.exp(x), g = (x) => x, h = (x) => Math.log(x); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), p0 = parseFloat(input_p0.value), q0 = parseFloat(input_q0.value), a0 = parseFloat(input_a0.value), x0 = parseFloat(input_x0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], f = (x) => Math.sqrt(x ** 2 + p0 ** 2) + Math.sqrt((a0 - x) ** 2 + q0 ** 2), f1 = (x) => x * (x ** 2 + p0 ** 2) ** (- 1 / 2) + (x ** 2 - 2 * a0 * x + a0 ** 2 + q0 ** 2) ** (-1 / 2) * (x - a0), g = (x) => f1(x0) * (x - x0) + f(x0), lines = [[0, 0, 0, p0, 'green'], [a0, 0, a0, q0, 'green'], [0, p0, x0, 0, 'green'], [x0, 0, a0, q0, 'green'], [x0, 0, x0, y2, 'brown']], fns = [[f, 'red']], fns1 = [[g, 'blue']]; fns.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns1.forEach((o) => { let [fn, color] = o; lines.push([x1, fn(x1), x2, fn(x2), color]); }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(fns.join('\n')); p(fns1.join('\n')); p(`f(${a0 * p0 / (p0 + q0)}) = ${f(a0 * p0 / (p0 + q0))}`); p(f(x0)); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿