学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈4〉数列の極限,順列/順列・組合せ/確率/関数の極限と微分法(松坂 和夫(著)、岩波書店)の第17章(関数の変化をとらえる - 関数の極限と微分法)、17.5(いろいろな関数の導関数)、高次導関数、問58、59、60、61.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, sin, cos, log, Derivative, Function x = symbols('x') print('58.') funcs = [(sin(x), 10), (cos(x), 11), (log(x), 2), (1 / x, 4)] for func, n in funcs: d = Derivative(func, x, n) fn = d.doit() pprint(d) pprint(fn) print() print('59.') f = Function('f') g = Function('g') fg = f(g(x)) for n in [2, 3]: d = Derivative(fg, x, n) fn = d.doit() pprint(d) pprint(d.doit()) print()
入出力結果(Terminal, IPython)
$ ./sample58.py 58. 10 d ────(sin(x)) 10 dx -sin(x) 11 d ────(cos(x)) 11 dx sin(x) 2 d ───(log(x)) 2 dx -1 ─── 2 x 4 d ⎛1⎞ ───⎜─⎟ 4⎝x⎠ dx 24 ── 5 x 59. 2 d ───(f(g(x))) 2 dx 2 2 2 ⎛d ⎞ d d ⎛ d ⎞│ ⎜──(g(x))⎟ ⋅──────(f(g(x))) + ───(g(x))⋅⎜───(f(ξ₁))⎟│ ⎝dx ⎠ 2 2 ⎝dξ₁ ⎠│ξ₁=g(x) dg(x) dx 3 d ───(f(g(x))) 3 dx 3 3 2 2 3 ⎛d ⎞ d d d d d ⎛ d ⎜──(g(x))⎟ ⋅──────(f(g(x))) + 3⋅──(g(x))⋅──────(f(g(x)))⋅───(g(x)) + ───(g(x))⋅⎜─── ⎝dx ⎠ 3 dx 2 2 3 ⎝dξ₁ dg(x) dg(x) dx dx ⎞│ (f(ξ₁))⎟│ ⎠│ξ₁=g(x) $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample58.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => x ** 3 + 3 * x - 6, f1 = (x) => 3 * x ** 2 + 3, f2 = (x) => 6 * x, f3 = (x) => 6; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = []; for (let x = x1; x <= x2; x += dx) { let y = f(x); if (Math.abs(y) < Infinity) { points.push([x, y, 'red']); } } let t1 = points.length; for (let x = x1; x <= x2; x += dx) { let y = f1(x); if (Math.abs(y) < Infinity) { points.push([x, y, 'green']); } } let lines = []; for (let x = x1; x <= x2; x += 100 * dx) { lines.push([x1, f2(x1), x2, f2(x2), 'blue']); } for (let x = x1; x <= x2; x += 100 * dx) { lines.push([x1, f3(x1), x2, f3(x2), 'brown']); } let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿