学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第18章(曲線の性質、最大・最小 - 微分法の応用)、18.3(曲線の凹凸、曲線をえがくこと)、グラフをえがくこと、問36.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, exp, log, Derivative, solve print('36.') x = symbols('x') fs = [3 * x ** 4 + 4 * x ** 3, -x - 4 / x, exp(-x ** 2), x * exp(-x), x ** 2 / (x ** 2 + 1), log(x) / x] for i, f in enumerate(fs, 1): print('({0})'.format(i)) pprint(f) pprint(solve(f, x)) print() for n in range(1, 3): d = Derivative(f, x, n) fn = d.doit() pprint(d) pprint(fn) pprint(solve(fn, x)) print() print()
入出力結果(Terminal, IPython)
=$ ./sample36.py 36. (1) 4 3 3⋅x + 4⋅x [-4/3, 0] d ⎛ 4 3⎞ ──⎝3⋅x + 4⋅x ⎠ dx 3 2 12⋅x + 12⋅x [-1, 0] 2 d ⎛ 4 3⎞ ───⎝3⋅x + 4⋅x ⎠ 2 dx 12⋅x⋅(3⋅x + 2) [-2/3, 0] (2) 4 -x - ─ x [-2⋅ⅈ, 2⋅ⅈ] d ⎛ 4⎞ ──⎜-x - ─⎟ dx⎝ x⎠ 4 -1 + ── 2 x [-2, 2] 2 d ⎛ 4⎞ ───⎜-x - ─⎟ 2⎝ x⎠ dx -8 ─── 3 x [] (3) 2 -x ℯ [] ⎛ 2⎞ d ⎜ -x ⎟ ──⎝ℯ ⎠ dx 2 -x -2⋅x⋅ℯ [0] 2⎛ 2⎞ d ⎜ -x ⎟ ───⎝ℯ ⎠ 2 dx 2 ⎛ 2 ⎞ -x 2⋅⎝2⋅x - 1⎠⋅ℯ ⎡-√2 √2⎤ ⎢────, ──⎥ ⎣ 2 2 ⎦ (4) -x x⋅ℯ [0] d ⎛ -x⎞ ──⎝x⋅ℯ ⎠ dx -x -x - x⋅ℯ + ℯ [1] 2 d ⎛ -x⎞ ───⎝x⋅ℯ ⎠ 2 dx -x (x - 2)⋅ℯ [2] (5) 2 x ────── 2 x + 1 [0] ⎛ 2 ⎞ d ⎜ x ⎟ ──⎜──────⎟ dx⎜ 2 ⎟ ⎝x + 1⎠ 3 2⋅x 2⋅x - ───────── + ────── 2 2 ⎛ 2 ⎞ x + 1 ⎝x + 1⎠ [0] 2⎛ 2 ⎞ d ⎜ x ⎟ ───⎜──────⎟ 2⎜ 2 ⎟ dx ⎝x + 1⎠ ⎛ 4 2 ⎞ ⎜ 4⋅x 5⋅x ⎟ 2⋅⎜───────── - ────── + 1⎟ ⎜ 2 2 ⎟ ⎜⎛ 2 ⎞ x + 1 ⎟ ⎝⎝x + 1⎠ ⎠ ────────────────────────── 2 x + 1 ⎡-√3 √3⎤ ⎢────, ──⎥ ⎣ 3 3 ⎦ (6) log(x) ────── x [1] d ⎛log(x)⎞ ──⎜──────⎟ dx⎝ x ⎠ log(x) 1 - ────── + ── 2 2 x x [ℯ] 2 d ⎛log(x)⎞ ───⎜──────⎟ 2⎝ x ⎠ dx 2⋅log(x) - 3 ──────────── 3 x ⎡ 3/2⎤ ⎣ℯ ⎦ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="0"> <label for="x2">x2 = </label> <input id="x2" type="number" value="15"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-0.05"> <label for="y2">y2 = </label> <input id="y2" type="number" value="0.4"> <br> <label for="dx0">dx0 = </label> <input id="dx0" type="number" min="0" value="0.1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample36.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_dx0 = document.querySelector('#dx0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_dx0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => Math.log(x) / x, f1 = (x) => (1 - Math.log(x)) / x ** 2, f2 = (x) => (-3 + 2 * Math.log(x)) / x ** 3, g = (x0) => (x) => f1(x0) * (x - x0) + f(x0), h = (x0) => (x) => f2(x0) * (x - x0) + f1(x0); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), dx0 = parseFloat(input_dx0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [], fns = [[f, 'red'], [f1, 'blue']], fns1 = [], fns2 = [[g, 'green'], [h, 'orange']]; fns.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns1.forEach((o) => { let [fn, color] = o; lines.push([x1, fn(x1), x2, fn(x2), color]); }); fns2.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = fn(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿