学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第5章(平均値の定理)、3(増加・減少関数)、補充問題29、30、31、32、33.を取り組んでみる。
傾斜角をΘとする。
f(θ)=12(10+2·10cosθ+10)10sinθ=(20+20cosθ)sinθ=20(1+cosθ)sinθf'(θ)=20(−sinθsinθ+(1+cosθ)cosθ)=20(−sin2θ+cosθ+cos2θ)=20(2cos2θ+cosθ−1)2cos2θ+cosθ−1=0(2cosθ−1)(cosθ+1)=0cosθ=12θ=π3
f'(x)=2x−ax2=1x2(2x3−a)
f'(2)=16−aa=16
f'(−3)=−54−aa=−54
2x3−a=0x3=a2f'((a2)13)=0a≥0x<0,0<x<(a2)13f'(x)<0x>(a2)13f'(x)>0a<0x<(a2)13f'(x)<0(a2)13<x<0f'(x)>00<xf'(x)>0
強さaの光源からの距離をxとする。
f(x)=a1x2+b1(c−x)2=ax2+b(x−c)2f'(x)=−2axx4+−b2(x−c)(x−c)4=−2ax3+−b2(x−c)3=−2(a(x−c)3+bx3)x(x−c)3a(x−c)3+bx3=0−ab=(xx−c)3(ab)13=−xx−cx=c(ab)13+1
長方形の上の辺の長さをa、横の辺の長さをb、半円形の半径をrとする。
a+2b+2πr12=6a+b+πr=6r=12aa+b+aπ2=6b=6−(1+π2)af(a)=ab+12πr2=a(6−(1+π2)a)+12πa24=(18π−(1+π2))a2+6af'(a)=2(18π−(1+π2))a+62(18π−(1+π2))a+6=0(−1−38π)a+3=0a=338π+1=243π+8b=6−(1+π2)243π+8=18π+24−24−123π+8=18π−123π+8
半径をr、角をΘとする。
2r+2πrθ2π=16θ=2π(16−2r)2πr=2(8−r)rf(r)=πr2θ2π=r22·2(8−r)r=r(8−r)=8r−r2f'(r)=8−2rr=4θ=2(8−4)4=2
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Derivative, solve, Rational, sin, cos, pi print('29.') x = symbols('x', positive=True) f = Rational(1, 2) * (10 + 2 * 10 * cos(x) + 10) * sin(x) d = Derivative(f, x, 1) f1 = d.doit() pprint(d) pprint(f1) pprint(solve(f1)) print('30') a = symbols('a') f = x ** 2 + a / x d = Derivative(f, x, 1) f1 = d.doit() pprint(d) pprint(f1) pprint(solve(f1)) for x0 in [2, -3]: pprint(solve(f1.subs({x: x0}), a)) print('32') f = x * (6 - (1 + pi / 2) * x) + Rational(1, 2) * pi * x ** 2 / 4 d = Derivative(f, x, 1) f1 = d.doit() pprint(d) pprint(f1) pprint(solve(f1)) print('33.') f = x ** 2 / 2 * 2 * (8 - x) / x d = Derivative(f, x, 1) f1 = d.doit() pprint(d) pprint(f1) pprint(solve(f1))
入出力結果(Terminal, IPython)
$ ./sample29.py 29. d ──((10⋅cos(x) + 10)⋅sin(x)) dx 2 (10⋅cos(x) + 10)⋅cos(x) - 10⋅sin (x) ⎡π⎤ ⎢─⎥ ⎣3⎦ 30 ∂ ⎛a 2⎞ ──⎜─ + x ⎟ ∂x⎝x ⎠ a - ── + 2⋅x 2 x ⎡⎧ 3⎫⎤ ⎢⎨a: 2⋅x ⎬⎥ ⎣⎩ ⎭⎦ [16] [-54] 32 ⎛ 2 ⎞ d ⎜π⋅x ⎛ ⎛ π⎞ ⎞⎟ ──⎜──── + x⋅⎜- x⋅⎜1 + ─⎟ + 6⎟⎟ dx⎝ 8 ⎝ ⎝ 2⎠ ⎠⎠ ⎛ π ⎞ ⎛ π⎞ π⋅x x⋅⎜- ─ - 1⎟ - x⋅⎜1 + ─⎟ + ─── + 6 ⎝ 2 ⎠ ⎝ 2⎠ 4 ⎡ 24 ⎤ ⎢───────⎥ ⎣8 + 3⋅π⎦ 33. d ──(x⋅(-x + 8)) dx -2⋅x + 8 [4] $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="dx0">dx0 = </label> <input id="dx0" type="number" min="0" value="0.1"> <label for="a0">a = </label> <input id="a0" type="number" value="2"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample29.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_dx0 = document.querySelector('#dx0'), input_a0 = document.querySelector('#a0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_dx0, input_a0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), dx0 = parseFloat(input_dx0.value), a0 = parseFloat(input_a0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], x3 = (a0 / 2) ** (1 / 3), lines = [], f = (x) => x ** 2 + a0 / x, f1 = (x) => 2 * x - a0 / x ** 2, g = (x0) => (x) => f1(x0) * (x - x0) + f(x0), fns = [[f, 'green']], fns1 = [], fns2 = [[g, 'orange']]; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
(x) => x ** 2 + a0 / x,green (x0) => (x) => f1(x0) * (x - x0) + f(x0),orange
0 コメント:
コメントを投稿