Processing math: 100%

2017年7月12日水曜日

学習環境

ラング線形代数学(上)(S.ラング (著)、芹沢 正三 (翻訳)、ちくま学芸文庫)の5章(線形写像と行列)、3(線形写像の合成)、練習問題8.を取り組んでみる。


  1. FθFθ'=(cosθsinθsinθcosθ)(cosθ'sinθ'sinθ'cosθ')=(cosθcosθsinθsinθ'cosθsinθ'sinθcosθsinθcosθ'+cosθsinθ'sinθsinθ'+cosθcosθ)=(cos(θ+θ)sin(θ+θ')sin(θ+θ)cos(θ+θ))=Fθ+θ

    FθFθ=(cosθsinθsinθcosθ)(cos(θ)sin(θ)sin(θ)cos(θ))=(cosθcos(θ)sinθsin(θ)cosθsin(θ)sinθcos(θ)sinθcos(θ)+cosθsin(θ)sinθsin(θ)+cosθcos(θ))=(cosθcosθ+sinθsinθsinθcosθcosθsinθsinθcosθcosθsinθsinθsinθ+cosθcosθ)=(cos(θθ)sin(θθ)sin(θθ)cos(θθ))=(cos0sin0sin0cos0)=(1001)

  2. X=(x,y)Fθ(X)=(xcosθysinθxsinθ+ycosθ)X=x2+y2Fθ(X)=(xcosθysinθ)2+(xsinθ+ycosθ)2=x2cos2θ+y2sin2θ2xysin2θ+x2sin2θ+y2cos2θ+2xysinθcosθ=x2(sin2θ+cos2θ)+y2(sin2θ+cos2θ)=x2+y2

    1. id(1,1,0)=(1,1,0)t=a11(211)+a21(001)+a31(111)id(1,1,1)=(1,1,1)t=a12(211)+a22(001)+a32(111)id(0,1,2)=(0,1,2)t=a13(211)+a23(001)+a33(111)2a11a31=1a31=2a111a11+2a111=1a11=23a31=1323+a21+13=0a21=12a12a32=1a32=2a12+1a12+2a12+1=1a12=0a32=1a22+1=1a22=02a13a33=0a33=2a13a13+2a13=1a13=13a33=2313+a23+23=2a23=1(2301310113123)

    2. id(3,2,1)=(3,2,1)t=a11(110)+a21(124)+a31(211)id(0,2,5)=(0,2,5)t=a12(110)+a22(124)+a32(211)id(1,1,2)=(1,1,2)t=a13(110)+a23(124)+a33(211)a11a21+2a31=3a11=a212a31+3a212a31+3+2a21a31=23a213a31=1a31=a21+13a11=a212a2123+3=a21+734a21+a21+13=15a21=23a21=215a11=215+73=3315a31=215+13=715a12a22+2a32=0a12=a222a32a222a32+2a22a32=23a223a32=2a22=a3223a12=a32232a32=a32234a3283+a32=5a32=1+815=2315a12=231523=3315a22=231523=1315a13a23+2a33=1a13=a232a33+1a232a33+1+2a23a33=13a233a33=0a33=a23a13=a232a23+1=a23+14a23+a23=2a23=25a33=25a13=35(3315331535215131525715231525)

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, Matrix, sin, cos, Rational

print('1.')
Θ, Θ1 = symbols('Θ Θ1')

M = Matrix([[cos(Θ), -sin(Θ)],
            [sin(Θ), cos(Θ)]])
M1 = M.subs({Θ: Θ1})

A = M * M1
B = M.subs({Θ: Θ + Θ1})
pprint(A)
pprint(B)

print('2.')
x, y = symbols('x y')
X = Matrix([x, y])
a = (M * X).norm()
b = X.norm()
pprint(a)
pprint(b)

入出力結果(Terminal, IPython)

$ ./sample1.py
1.
⎡-sin(Θ)⋅sin(Θ1) + cos(Θ)⋅cos(Θ1)  -sin(Θ)⋅cos(Θ1) - sin(Θ1)⋅cos(Θ)⎤
⎢                                                                  ⎥
⎣sin(Θ)⋅cos(Θ1) + sin(Θ1)⋅cos(Θ)   -sin(Θ)⋅sin(Θ1) + cos(Θ)⋅cos(Θ1)⎦
⎡cos(Θ + Θ1)  -sin(Θ + Θ1)⎤
⎢                         ⎥
⎣sin(Θ + Θ1)  cos(Θ + Θ1) ⎦
2.
   _________________________________________________
  ╱                      2                        2 
╲╱  │x⋅sin(Θ) + y⋅cos(Θ)│  + │x⋅cos(Θ) - y⋅sin(Θ)│  
   _____________
  ╱    2      2 
╲╱  │x│  + │y│  
$

0 コメント:

コメントを投稿