学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
ラング線形代数学(上)(S.ラング (著)、芹沢 正三 (翻訳)、ちくま学芸文庫)の5章(線形写像と行列)、3(線形写像の合成)、練習問題8.を取り組んでみる。
FθFθ'=(cosθ−sinθsinθcosθ)(cosθ'−sinθ'sinθ'cosθ')=(cosθcosθ′−sinθsinθ'−cosθsinθ'−sinθcosθ′sinθcosθ'+cosθsinθ'−sinθsinθ'+cosθcosθ′)=(cos(θ+θ′)−sin(θ+θ')sin(θ+θ′)cos(θ+θ′))=Fθ+θ′
FθF−θ=(cosθ−sinθsinθcosθ)(cos(−θ)−sin(−θ)sin(−θ)cos(−θ))=(cosθcos(−θ)−sinθsin(−θ)−cosθsin(−θ)−sinθcos(−θ)sinθcos(−θ)+cosθsin(−θ)−sinθsin(−θ)+cosθcos(−θ))=(cosθcosθ+sinθsinθsinθcosθ−cosθsinθsinθcosθ−cosθsinθsinθsinθ+cosθcosθ)=(cos(θ−θ)sin(θ−θ)sin(θ−θ)cos(θ−θ))=(cos0sin0sin0cos0)=(1001)
X=(x,y)Fθ(X)=(xcosθ−ysinθxsinθ+ycosθ)‖X‖=√x2+y2‖Fθ(X)‖=√(xcosθ−ysinθ)2+(xsinθ+ycosθ)2=√x2cos2θ+y2sin2θ−2xysin2θ+x2sin2θ+y2cos2θ+2xysinθcosθ=√x2(sin2θ+cos2θ)+y2(sin2θ+cos2θ)=√x2+y2-
id(1,1,0)=(1,1,0)t=a11(211)+a21(001)+a31(−111)id(−1,1,1)=(−1,1,1)t=a12(211)+a22(001)+a32(−111)id(0,1,2)=(0,1,2)t=a13(211)+a23(001)+a33(−111)2a11−a31=1a31=2a11−1a11+2a11−1=1a11=23a31=1323+a21+13=0a21=−12a12−a32=−1a32=2a12+1a12+2a12+1=1a12=0a32=1a22+1=1a22=02a13−a33=0a33=2a13a13+2a13=1a13=13a33=2313+a23+23=2a23=1(23013−10113123)
id(3,2,1)=(3,2,1)t=a11(110)+a21(−124)+a31(2−11)id(0,−2,5)=(0,−2,5)t=a12(110)+a22(−124)+a32(2−11)id(1,1,2)=(1,1,2)t=a13(110)+a23(−124)+a33(2−11)a11−a21+2a31=3a11=a21−2a31+3a21−2a31+3+2a21−a31=23a21−3a31=−1a31=a21+13a11=a21−2a21−23+3=−a21+734a21+a21+13=15a21=23a21=215a11=−215+73=3315a31=215+13=715a12−a22+2a32=0a12=a22−2a32a22−2a32+2a22−a32=−23a22−3a32=−2a22=a32−23a12=a32−23−2a32=−a32−234a32−83+a32=5a32=1+815=2315a12=−2315−23=−−3315a22=2315−23=1315a13−a23+2a33=1a13=a23−2a33+1a23−2a33+1+2a23−a33=13a23−3a33=0a33=a23a13=a23−2a23+1=−a23+14a23+a23=2a23=25a33=25a13=35(3315−331535215131525715231525)
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Matrix, sin, cos, Rational print('1.') Θ, Θ1 = symbols('Θ Θ1') M = Matrix([[cos(Θ), -sin(Θ)], [sin(Θ), cos(Θ)]]) M1 = M.subs({Θ: Θ1}) A = M * M1 B = M.subs({Θ: Θ + Θ1}) pprint(A) pprint(B) print('2.') x, y = symbols('x y') X = Matrix([x, y]) a = (M * X).norm() b = X.norm() pprint(a) pprint(b)
入出力結果(Terminal, IPython)
$ ./sample1.py 1. ⎡-sin(Θ)⋅sin(Θ1) + cos(Θ)⋅cos(Θ1) -sin(Θ)⋅cos(Θ1) - sin(Θ1)⋅cos(Θ)⎤ ⎢ ⎥ ⎣sin(Θ)⋅cos(Θ1) + sin(Θ1)⋅cos(Θ) -sin(Θ)⋅sin(Θ1) + cos(Θ)⋅cos(Θ1)⎦ ⎡cos(Θ + Θ1) -sin(Θ + Θ1)⎤ ⎢ ⎥ ⎣sin(Θ + Θ1) cos(Θ + Θ1) ⎦ 2. _________________________________________________ ╱ 2 2 ╲╱ │x⋅sin(Θ) + y⋅cos(Θ)│ + │x⋅cos(Θ) - y⋅sin(Θ)│ _____________ ╱ 2 2 ╲╱ │x│ + │y│ $
0 コメント:
コメントを投稿