学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第6章(曲線をえがくこと)、4(極座標)、練習問題10、11、12.を取り組んでみる。
中心(3, 0)、半径3の円。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, solve, sqrt, plot x, y = symbols('x y', real=True) eqs = [x ** 4 - x ** 3 + 4 * x ** 2 * y ** 2 + 3 * x * y ** 2 + y ** 4, (x ** 2 + y ** 2) ** 2 - abs(4 * x ** 3 - 3 * x * (x ** 2 + y ** 2)), (x - 3) ** 2 + y ** 2 - 3 ** 2] for i, eq in enumerate(eqs, 10): print(f'{i}.') s = solve(eq, y) pprint(s) try: p = plot(*s, show=False, legend=True) p.save(f'sample{i}.svg') except Exception as err: print(type(err), err) print()
入出力結果(Terminal, IPython)
$ ./sample10.py 10. ⎡ ________________________________________ ______________________ ⎢ ╱ __________________ ╱ _______ ⎢ ╱ ╱ 2 ╱ ╱ 2 ⎢ ╱ 2 x⋅╲╱ 12⋅x + 28⋅x + 9 3⋅x ╱ 2 x⋅╲╱ 12⋅x ⎢- ╱ - 2⋅x - ─────────────────────── - ─── , ╱ - 2⋅x - ──────────── ⎣ ╲╱ 2 2 ╲╱ 2 __________________ ________________________________________ ___ ___________ ╱ __________________ ╱ ╱ ╱ 2 ╱ + 28⋅x + 9 3⋅x ╱ 2 x⋅╲╱ 12⋅x + 28⋅x + 9 3⋅x ╱ ─────────── - ─── , - ╱ - 2⋅x + ─────────────────────── - ─── , ╱ - 2 ╲╱ 2 2 ╲╱ _____________________________________⎤ __________________ ⎥ ╱ 2 ⎥ 2 x⋅╲╱ 12⋅x + 28⋅x + 9 3⋅x ⎥ 2⋅x + ─────────────────────── - ─── ⎥ 2 2 ⎦ 11. ⎡ ______________________________ ______________________________ ⎢ ╱ ⎛ ___________ ⎞ ╱ ⎛ ___________ ⎞ ⎢√2⋅╲╱ x⋅⎝-2⋅x - ╲╱ -16⋅x + 9 + 3⎠ -√2⋅╲╱ x⋅⎝-2⋅x + ╲╱ -16⋅x + 9 + 3⎠ ⎢────────────────────────────────────, ──────────────────────────────────────, ⎢ 2 2 ⎢ ⎣ ______________________________ ______________________________ ╱ ⎛ ___________ ⎞ ╱ ⎛ ___________ ⎞ √2⋅╲╱ x⋅⎝-2⋅x + ╲╱ -16⋅x + 9 + 3⎠ -√2⋅╲╱ -x⋅⎝2⋅x + ╲╱ -16⋅x + 9 - 3⎠ ────────────────────────────────────, ──────────────────────────────────────, 2 2 ⎧ _____________________________ ⎪ ╱ ⎛ __________ ⎞ 2 ⎛ __________ ⎞ ⎪√2⋅╲╱ x⋅⎝-2⋅x - ╲╱ 16⋅x + 9 - 3⎠ x ⋅⎝8⋅x + 3⋅╲╱ 16⋅x + 9 + 9⎠ ⎨─────────────────────────────────── for ───────────────────────────── ≥ 0, ⎪ 2 2 ⎪ ⎩ nan otherwise ⎧ _____________________________ ⎧ ⎪ ╱ ⎛ __________ ⎞ 2 ⎛ __________ ⎞ ⎪ ⎪√2⋅╲╱ x⋅⎝-2⋅x + ╲╱ 16⋅x + 9 - 3⎠ x ⋅⎝8⋅x - 3⋅╲╱ 16⋅x + 9 + 9⎠ ⎪ ⎨─────────────────────────────────── for ───────────────────────────── ≥ 0, ⎨ ⎪ 2 2 ⎪ ⎪ ⎪ ⎩ nan otherwise ⎩ _____________________________ ╱ ⎛ __________ ⎞ 2 ⎛ __________ ⎞ -√2⋅╲╱ -x⋅⎝2⋅x - ╲╱ 16⋅x + 9 + 3⎠ x ⋅⎝8⋅x - 3⋅╲╱ 16⋅x + 9 + 9⎠ ───────────────────────────────────── for ───────────────────────────── ≥ 0, 2 2 nan otherwise ⎧ _____________________________ ⎤ ⎪ ╱ ⎛ __________ ⎞ 2 ⎛ __________ ⎞ ⎥ ⎪-√2⋅╲╱ -x⋅⎝2⋅x + ╲╱ 16⋅x + 9 + 3⎠ x ⋅⎝8⋅x + 3⋅╲╱ 16⋅x + 9 + 9⎠ ⎥ ⎨───────────────────────────────────── for ───────────────────────────── ≥ 0⎥ ⎪ 2 2 ⎥ ⎪ ⎥ ⎩ nan otherwise ⎦ <class 'TypeError'> Invalid comparison of complex -3550.0 + 1843.23085911668*I 12. ⎡ ____________ ____________⎤ ⎣╲╱ x⋅(-x + 6) , -╲╱ -x⋅(x - 6) ⎦ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dΘ">dΘ = </label> <input id="dΘ" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample10.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dΘ = document.querySelector('#dΘ'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dΘ, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f10 = (Θ) => Math.cos(3 * Θ), f11 = (Θ) => Math.abs(Math.cos(3 * Θ)), f12 = (Θ) => 6 * Math.cos(Θ); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dΘ = parseFloat(input_dΘ.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dΘ === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [], fns = [[f10, 'rgba(255, 0, 0, 0.1)'], [f11, 'rgba(0, 255, 0, 0.1)'], [f12, 'rgba(0, 0, 255, 0.1)']], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let Θ = 0; Θ <= 2 * Math.PI; Θ += dΘ) { let r = f(Θ), x = r * Math.cos(Θ), y = r * Math.sin(Θ); points.push([x, y, color]); } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿