学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
オイラーの贈物―人類の至宝eiπ=-1を学ぶ (吉田 武(著)、東海大学出版会)の第II部(関数の定義(Definitions of Functions))、第5章(テイラー展開(Taylar's Expansion))、5.2(テイラー級数)、5.2.1(剰余項を求める)、5.2.2(テイラー級数の定義)、5.2.3(項別微分・項別積分)、問題2.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, summation, oo print('2.') x, n = symbols('x n') fs = [(-1) ** n * x ** (2 * n), (n + 1) * x ** n] for i, f in enumerate(fs, 1): print(f'[{i}]') s = summation(f, (n, 0, oo)) pprint(s) print()
入出力結果(Terminal, IPython)
$ ./sample2.py 2. [1] ⎧ 1 │ 2│ ⎪ ────── for │x │ < 1 ⎪ 2 ⎪ x + 1 ⎪ ⎪ ∞ ⎨ ___ ⎪ ╲ ⎪ ╲ n 2⋅n ⎪ ╱ (-1) ⋅x otherwise ⎪ ╱ ⎪ ‾‾‾ ⎩n = 0 [2] ⎛⎧ x ⎞ ⎛⎧ 1 ⎞ ⎜⎪───────── for │x│ < 1⎟ ⎜⎪ ────── for │x│ < 1⎟ ⎜⎪ 2 ⎟ ⎜⎪ -x + 1 ⎟ ⎜⎪(-x + 1) ⎟ ⎜⎪ ⎟ ⎜⎪ ⎟ ⎜⎪ ∞ ⎟ ⎜⎪ ∞ ⎟ ⎜⎪ ___ ⎟ ⎜⎨ ___ ⎟ + ⎜⎨ ╲ ⎟ ⎜⎪ ╲ ⎟ ⎜⎪ ╲ n ⎟ ⎜⎪ ╲ n ⎟ ⎜⎪ ╱ x otherwise ⎟ ⎜⎪ ╱ n⋅x otherwise ⎟ ⎜⎪ ╱ ⎟ ⎜⎪ ╱ ⎟ ⎜⎪ ‾‾‾ ⎟ ⎜⎪ ‾‾‾ ⎟ ⎜⎪n = 0 ⎟ ⎝⎩n = 0 ⎠ ⎝⎩ ⎠ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-2"> <label for="x2">x2 = </label> <input id="x2" type="number" value="2"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-2"> <label for="y2">y2 = </label> <input id="y2" type="number" value="2"> <br> <label for="n0">n = </label> <input id="n0" type="number" min="0" step="1" value="0"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample2.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_n0 = document.querySelector('#n0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_n0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => 1 / (1 + x ** 2), g = (x) => 1 / (1 - x) ** 2, fterm = (n) => (x) => (-1) ** n * x ** (2 * n), gterm = (n) => (x) => (n + 1) * x ** n; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), n0 = parseInt(input_n0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [[-1, y1, -1, y2, 'brown'], [1, y1, 1, y2, 'brown']], f1 = (x) => range(0, n0 + 1) .reduce((prev, next) => prev + fterm(next)(x), 0), g1 = (x) => range(0, n0 + 1) .reduce((prev, next) => prev + gterm(next)(x), 0), fns = [[f, 'red'], [f1, 'green'], [g, 'blue'], [g1, 'orange']], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); p(Math.sqrt(a0 + b0) - Math.sqrt(b0)); p(2 * Math.sqrt(a0 + b0) / a0 - 4 / (3 * a0 ** 2) * (Math.sqrt((a0 + b0) ** 3) - Math.sqrt(b0 ** 3))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿