学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第19章(細分による加法 - 積分法)、19.2(不定積分の計算)、置換積分法、問11.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, Integral, sin, cos, sqrt, exp, pi, plot print('11.') x, n, b = symbols('x n b') a = symbols('a', nonzero=True) fs = [(x + 2) ** 10, (1 - 5 * x) ** 3, 6 / (1 - 2 * x) ** 4, 1 / (2 * x - 3), sqrt(4 - x), 1 / sqrt(2 * x + 3), (a * x + b) ** n, sin(5 * x), cos(pi / 3 - x / 2), sin(a * x + b), cos(a * x + b), exp(-4 * x), exp(a * x + b)] for i, f in enumerate(fs, 1): print(f'({i})') I = Integral(f, x) for o in [I, I.doit()]: pprint(o) print() try: p = plot(f, show=False, legend=True) p.save(f'sample11_{i}.svg') except Exception as err: print(type(err), err) print()
入出力結果(Terminal, IPython)
$ ./sample11.py 11. (1) ⌠ ⎮ 10 ⎮ (x + 2) dx ⌡ 11 x 10 9 8 7 6 5 4 3 ─── + 2⋅x + 20⋅x + 120⋅x + 480⋅x + 1344⋅x + 2688⋅x + 3840⋅x + 3840⋅x 11 2 + 2560⋅x + 1024⋅x (2) ⌠ ⎮ 3 ⎮ (-5⋅x + 1) dx ⌡ 4 2 125⋅x 3 15⋅x - ────── + 25⋅x - ───── + x 4 2 (3) ⌠ ⎮ 6 ⎮ ─────────── dx ⎮ 4 ⎮ (-2⋅x + 1) ⌡ -6 ──────────────────────── 3 2 48⋅x - 72⋅x + 36⋅x - 6 (4) ⌠ ⎮ 1 ⎮ ─────── dx ⎮ 2⋅x - 3 ⌡ log(2⋅x - 3) ──────────── 2 (5) ⌠ ⎮ ________ ⎮ ╲╱ -x + 4 dx ⌡ 3/2 -2⋅(-x + 4) ─────────────── 3 (6) ⌠ ⎮ 1 ⎮ ─────────── dx ⎮ _________ ⎮ ╲╱ 2⋅x + 3 ⌡ _________ ╲╱ 2⋅x + 3 (7) ⌠ ⎮ n ⎮ (a⋅x + b) dx ⌡ ⎧ log(a⋅x + b) for n = -1 ⎪ ⎪ n + 1 ⎨(a⋅x + b) ⎪────────────── otherwise ⎪ n + 1 ⎩ ─────────────────────────── a <class 'ValueError'> The same variable should be used in all univariate expressions being plotted. (8) ⌠ ⎮ sin(5⋅x) dx ⌡ -cos(5⋅x) ────────── 5 (9) ⌠ ⎮ ⎛x π⎞ ⎮ sin⎜─ + ─⎟ dx ⎮ ⎝2 6⎠ ⌡ ⎛x π⎞ -2⋅cos⎜─ + ─⎟ ⎝2 6⎠ (10) ⌠ ⎮ sin(a⋅x + b) dx ⌡ -cos(a⋅x + b) ────────────── a <class 'ValueError'> The same variable should be used in all univariate expressions being plotted. (11) ⌠ ⎮ cos(a⋅x + b) dx ⌡ sin(a⋅x + b) ──────────── a <class 'ValueError'> The same variable should be used in all univariate expressions being plotted. (12) ⌠ ⎮ -4⋅x ⎮ ℯ dx ⌡ -4⋅x -ℯ ─────── 4 (13) ⌠ ⎮ a⋅x + b ⎮ ℯ dx ⌡ a⋅x + b ℯ ──────── a <class 'ValueError'> The same variable should be used in all univariate expressions being plotted. $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> <label for="a0">a = </label> <input id="a0" type="number" value="2"> <label for="b0">b = </label> <input id="b0" type="number" value="3"> <label for="n0">n = </label> <input id="n0" type="number" value="4"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample11.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_a0 = document.querySelector('#a0'), input_b0 = document.querySelector('#b0'), input_n0 = document.querySelector('#n0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_a0, input_b0, input_n0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), a0 = parseFloat(input_a0.value), b0 = parseFloat(input_b0.value), n0 = parseFloat(input_n0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2 || a0 <= 0 || a0 === 0 || n0 === -1) { return; } let points = [], lines = [], f7 = (x) => (a0 * x + b0) ** n0, f10 = (x) => Math.sin(a0 * x + b0), f11 = (x) => Math.cos(a0 * x + b0), f13 = (x) => Math.exp(a0 * x + b0), fns = [[f7, 'red'], [f10, 'green'], [f11, 'blue'], [f13, 'orange']], fns1 = [], fns2 = []; fns.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns1.forEach((o) => { let [fn, color] = o; lines.push([x1, fn(x1), x2, fn(x2), color]); }); fns2.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = fn(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿