Processing math: 100%

2017年8月26日土曜日

学習環境

解析入門〈2〉(松坂 和夫(著)、岩波書店)の第9章(関数列と関数級数)、9.3(複素整級数(指数関数・三角関数再論))、問題3.を取り組んでみる。


    • eii=cosi+isiniei(i)=cos(i)+isin(i)eii=cosiisinieiieii=2isinisini=eiieii2i=e1e2i=i(ee1)2

    • ei(i)=cos(i)+isin(i)e=cosiisinieii=cosi+isinie1=cosi+isinie+e1=2cosicosi=e+e12

    • eiz=cosz+isinzeiz=cos(z)+isin(z)eiz=coszisinzcosz=eiz+eiz2sinz=eizeiz2itanz=sinzcosz=eizeizi(eiz+eiz)=e2iz1i(e2iz+1)tan(1+i)=e2i(1+i)1i(e2i(1+i)+1)=e2(i1)1i(e2(i1)+1)

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, exp, solve, I, E, sin, cos, tan

print('2.')
z = symbols('z')
eqs = [(sin(I), I * (E - exp(-1)) / 2),
       (cos(I), (E + exp(-1)) / 2),
       (tan(1 + I), (exp(2 * I * (1 + I)) - 1) / (I * (exp(2 * (I - 1)) + 1)))]

for i, eqs0 in enumerate(eqs, 1):
    print(f'({i})')
    for eq in eqs0:
        pprint(eq.as_real_imag())
    print()

入出力結果(Terminal, IPython)

$ ./sample3.py
2.
(1)
(0, sinh(1))
⎛      -1    ⎞
⎜     ℯ     ℯ⎟
⎜0, - ─── + ─⎟
⎝      2    2⎠

(2)
(cosh(1), 0)
⎛ -1       ⎞
⎜ℯ     ℯ   ⎟
⎜─── + ─, 0⎟
⎝ 2    2   ⎠

(3)
⎛     sin(2)           sinh(2)     ⎞
⎜────────────────, ────────────────⎟
⎝cos(2) + cosh(2)  cos(2) + cosh(2)⎠
⎛  ⎛ -2           ⎞  -2              ⎛      -2       ⎞  -2                    
⎜  ⎝ℯ  ⋅cos(2) + 1⎠⋅ℯ  ⋅sin(2)       ⎝-1 + ℯ  ⋅cos(2)⎠⋅ℯ  ⋅sin(2)             
⎜─────────────────────────────── - ───────────────────────────────, - ────────
⎜                              2                                 2            
⎜ -4    2      ⎛ -2           ⎞     -4    2      ⎛ -2           ⎞      -4    2
⎝ℯ  ⋅sin (2) + ⎝ℯ  ⋅cos(2) + 1⎠    ℯ  ⋅sin (2) + ⎝ℯ  ⋅cos(2) + 1⎠     ℯ  ⋅sin 

   -4    2                ⎛      -2       ⎞ ⎛ -2           ⎞⎞
  ℯ  ⋅sin (2)             ⎝-1 + ℯ  ⋅cos(2)⎠⋅⎝ℯ  ⋅cos(2) + 1⎠⎟
─────────────────────── - ──────────────────────────────────⎟
                      2                                  2  ⎟
      ⎛ -2           ⎞      -4    2      ⎛ -2           ⎞   ⎟
(2) + ⎝ℯ  ⋅cos(2) + 1⎠     ℯ  ⋅sin (2) + ⎝ℯ  ⋅cos(2) + 1⎠   ⎠

$

0 コメント:

コメントを投稿