2017年9月25日月曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第20章(面積、体積、長さ - 積分法の応用)、20.1(面積)、面積の公式、問10.を取り組んでみる。


  1. 1つ目の放物線の焦点。

    ( 0, 1 4 )

    2つ目の放物線を変形。

    ax= ( y+ 1 2 b ) 2 1 4 b 2 ax= ( y+ 1 2 b ) 2 1 4 b 2

    この放物線の焦点。

    ( a 4 1 4a b 2 , 1 2 b )

    求めるa、bの値。

    ( a 4 1 4a b 2 , 1 2 b ) a 4 b 2 4a =0 1 2 b= 1 4 a 2 b 2 =0 b= 1 2 a 2 = b 2 a 2 = 1 4 a>0 a= 1 2

    2つの放物線で囲まれる図形の面積。

    y= x 2 1 2 x= y 2 1 2 y x=2 y 2 y =y( 2y1 ) y=0, 1 2 ( y 1 4 ) 2 1 16 = 1 2 x ( y 1 4 ) 2 = 1 2 x+ 1 16 y 1 4 =± 1 2 x+ 1 16 y= 1 4 ± 1 2 x+ 1 16 x=2 x 4 x 2 2 x 4 x 2 x=0 x( 2 x 3 x1 )=0 x( x1 )( 2 x 2 +2x+1 )=0 x=0,1 0 1 ( ( 1 4 + 1 2 x+ 1 16 ) x 2 )dx + 0 1 2 ( 0( 2 y 2 y ) )dx = 0 1 ( ( 1 4 + 8 16 x+ 1 16 ) x 2 )dx + 0 1 2 ( 0( 2 y 2 y ) )dx = 0 1 ( ( 1 4 + 1 4 8x+1 ) x 2 )dx + 0 1 2 ( 0( 2 y 2 y ) )dx = 1 4 0 1 ( 1+ 8x+1 4 x 2 )dx 0 1 2 ( 2 y 2 y )dx = 1 4 [ x+ 2 3 · 1 8 ( 8x+1 ) 3 2 4 3 x 3 ] 0 1 [ 2 3 y 3 1 2 y 2 ] 0 1 2 = 1 4 [ x+ 1 12 ( 8x+1 ) 3 2 4 3 x 3 ] 0 1 [ 2 3 y 3 1 2 y 2 ] 0 1 2 = 1 4 ( ( 1+ 1 12 9 3 2 4 3 )( 1 12 ) )( 2 3 · 1 2 3 1 2 · 1 2 2 ) = 1 4 ( 1+ 3 3 3·4 4 3 1 12 )( 1 12 1 8 ) = 1 4 ( 1+ 9 4 4 3 1 12 ) 1 12 + 1 8 = 1 4 ( 1+ 9 4 4 3 1 12 1 3 + 1 2 ) = 1 4 · 12+271614+6 12 = 1 4 · 24 12 = 1 4 ·2 = 1 2

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, Rational, solve, plot, Integral, sqrt

print('10.')
x, y = symbols('x y')
a = Rational(1, 2)
b = -a
f = y - x ** 2
g = a * x - (y ** 2 + b * y)

s1 = solve(f, y)
s2 = solve(g, y)

pprint(s1)
pprint(s2)

p = plot(*s1, *s2, (x, -2, 2), show=False, legend=True)
p.save('sample10.svg')

pprint(solve(s1[0] - s2[1], x))
pprint(solve(s1[0] - s2[0], x))
pprint(solve(y ** 2 + b * y))

I = Integral(Rational(1, 4) + sqrt(Rational(1, 2) * x + Rational(1, 16)) -
             x**2, (x, 0, 1)) + Integral(0 - (2 * y ** 2 - y), (y, 0, Rational(1, 2)))

pprint(I)
pprint(I.doit())

入出力結果(Terminal, Jupyter(IPython))

$ ./sample10.py
10.
⎡ 2⎤
⎣x ⎦
⎡    _________        _________    ⎤
⎢  ╲╱ 8⋅x + 1    1  ╲╱ 8⋅x + 1    1⎥
⎢- ─────────── + ─, ─────────── + ─⎥
⎣       4        4       4        4⎦
[1]
⎡     1   ⅈ    1   ⅈ⎤
⎢0, - ─ - ─, - ─ + ─⎥
⎣     2   2    2   2⎦
[0, 1/2]
                      1                             
1/2                   ⌠                             
 ⌠                    ⎮ ⎛           ________    ⎞   
 ⎮  ⎛     2    ⎞      ⎮ ⎜   2      ╱ x   1     1⎟   
 ⎮  ⎝- 2⋅y  + y⎠ dy + ⎮ ⎜- x  +   ╱  ─ + ──  + ─⎟ dx
 ⌡                    ⎮ ⎝       ╲╱   2   16    4⎠   
 0                    ⌡                             
                      0                             
1/2
$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample10.js"></script>

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f = (x) => x ** 2,
    g1 = (x) => - Math.sqrt(8 * x + 1) / 4 + 1 / 4,
    g2 = (x) => Math.sqrt(8 * x + 1) / 4 + 1 / 4;

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }
    
    let points = [],
        lines = [],
        fns = [[f, 'red'],
               [g1, 'green'],
               [g2, 'blue']],
        fns1 = [],
        fns2 = [];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;
        
        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿