2017年9月24日日曜日

学習環境

オイラーの贈物―人類の至宝eiπ=-1を学ぶ (吉田 武(著)、東海大学出版会)の第II部(関数の定義(Definitions of Functions))、第7章(三角関数(Trigonometric Function))、7.5(三角関数の定義)、7.5.1(三角関数の性質)、問題2.を取り組んでみる。


    • sin( π+ π 12 ) =sinπcos π 12 +cosπsin π 12 =0cos π 12 6 2 4 = 2 6 4 cos 13π 12 =cosπcos π 12 sinπsin π 12 = 6 + 2 4 tan 13π 12 = tanπ+tan π 12 1tanπtan π 12 =2 3

    • sin 14π 12 =sinπcos π 6 +cosπsin π 6 =0cos π 6 3 2 = 3 2 cos 14π 12 =cosπcos π 6 sinπsin π 6 = 1 2 tan 14π 12 = tanπ+tan π 6 1tanπtan π 6 = 3

    • sin 15π 12 =sinπcos π 4 +cosπsin π 4 = 1 2 cos 15π 12 =cosπcos π 4 sinπsin π 4 = 1 2 tan 15π 12 = tanπ+tan π 4 1tanπtan π 4 =1

    • sin 16π 12 =sinπcos π 3 +cosπsin π 3 = 3 2 cos 16π 12 =cosπcos π 3 sinπsin π 3 = 1 2 tan 16π 12 = tanπ+tan π 3 1tanπtan π 3 = 3

    • sin 17π 12 =sinπcos 5π 12 +cosπsin 5π 12 = 6 + 2 4 cos 17π 12 =cosπcos 5π 12 sinπsin 5π 12 = 2 6 4 tan 17π 12 = tanπ+tan 5π 12 1tanπtan 5π 12 =2+ 3

    • sin 18π 12 =sinπcos π 2 +cosπsin π 2 =1 cos 18π 12 =cosπcos π 2 sinπsin π 2 =0 tan 18π 12 = tanπ+tan π 2 1tanπtan π 2

    • sin( 3 2 π+θ ) =sin 3π 2 cosθ+cos 3π 2 sinθ =cosθ cos( 3 2 π+θ )=cos 3π 2 cosθsin 3π 2 sinθ =sinθ tan( nπ+θ )= tannπ+tanθ 1tannπtanθ =tanθ cos π 12 = 6 + 2 4 sin π 12 = 6 2 4 tan 7π 12 =( 2+ 3 )

    • sin( π+θ ) =sinπcosθ+cosπsinθ =sinθ cos( π+θ )=cosπcosθsinπsinθ =cosθ tan( π+θ )= tanπ+tanθ 1tanπtanθ =tanθ sin 8π 12 = 3 2 cos 8π 12 = 1 2 tan 8π 12 = 3

    • 9π 12 = 3 4 π sin 9π 12 = 1 2 cos 9π 12 = 1 2 tan 8π 12 =1

    • 10π 12 = 5 6 π sin 10π 12 = 1 2 cos 10π 12 = 3 2 tan 10π 12 = 1 3

    • sin 11π 12 = 2 6 4 cos 11π 12 = 6 + 2 4 tan 11π 12 =2 3

    • sinπ=0 cosπ=1 tanπ=0

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import symbols, pprint, pi, sin, cos, tan


for n in range(13, 25):
    print(n)
    pprint(list(map(lambda f: f(n * pi / 12).factor(), [sin, cos, tan])))
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample2.py
13
⎡-√6 + √2  -(√2 + √6)          ⎤
⎢────────, ───────────, -√3 + 2⎥
⎣   4           4              ⎦

14
⎡      -√3   √3⎤
⎢-1/2, ────, ──⎥
⎣       2    3 ⎦

15
⎡-√2   -√2    ⎤
⎢────, ────, 1⎥
⎣ 2     2     ⎦

16
⎡-√3           ⎤
⎢────, -1/2, √3⎥
⎣ 2            ⎦

17
⎡-(√2 + √6)   -√6 + √2        ⎤
⎢───────────, ────────, √3 + 2⎥
⎣     4          4            ⎦

18
[-1, 0, zoo]

19
⎡-(√2 + √6)   -(-√6 + √2)          ⎤
⎢───────────, ────────────, -2 - √3⎥
⎣     4            4               ⎦

20
⎡-√3           ⎤
⎢────, 1/2, -√3⎥
⎣ 2            ⎦

21
⎡-√2   √2    ⎤
⎢────, ──, -1⎥
⎣ 2    2     ⎦

22
⎡      √3  -√3 ⎤
⎢-1/2, ──, ────⎥
⎣      2    3  ⎦

23
⎡-√6 + √2  √2 + √6         ⎤
⎢────────, ───────, -2 + √3⎥
⎣   4         4            ⎦

24
[0, 1, 0]

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.01">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample2.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    

    let points = [],
        lines = [],
        fns = [[Math.sin, 'red'],
               [Math.cos, 'green'],
               [Math.tan, 'blue']],
        fns1 = [],
        fns2 = [];

    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                if (Math.abs(y) < Infinity) {
                    points.push([x, y, color]);
                }
            }
        });                 

    fns2
        .forEach((o) => {
            let [f, color] = o;

            for (let x = x1; x <= x2; x += dx0) {
                let g = f(x);
                lines.push([x1, g(x1), x2, g(x2), color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿