2017年9月23日土曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第20章(面積、体積、長さ - 積分法の応用)、20.1(面積)、面積の公式、問8.を取り組んでみる。


    1. M( a+b 2 , a 2 + b 2 2 ) d dx x 2 =2x

      Aにおける放物線の接線の方程式。

      y=2a( xa )+ a 2 =2ax a 2

      Bにおける放物線の接線の方程式。

      y=2b( xb )+ b 2 =2bx b 2

      点Qを求める。

      2ax a 2 =2bx b 2 x= a 2 b 2 2( ab ) = a+b 2 Q( a+b 2 ,2a· a+b 2 a 2 ) Q( a+b 2 ,ab )

      よって、点MとQのx座標は等しいので、MとQを結ぶ直線MQは放物線の軸と平行である。


    2. P( a+b 2 , ( a+b 2 ) 2 ) P( a+b 2 , a 2 +2ab+ b 2 4 )

      線分MQの中点。

      ( a+b 2 , a 2 + b 2 2 +ab 2 ) =( a+b 2 , a 2 +2ab+ b 2 4 )

      よって、直線MQと放物線の交点Pは線分MQの中点である。


    3. 点A、Bを通る直線の方程式。

      y= b 2 a 2 ba ( xa )+ a 2 =( a+b )( xa )+ a 2 =( a+b )xab

      放物線と弦ABで囲まれる図形の面積。

      S 1 = a b ( ( ( a+b )xab ) x 2 )dx = [ a+b 2 x 2 abx 1 3 x 3 ] a b =( a+b 2 b 2 a b 2 1 3 b 3 )( a+b 2 a 2 a 2 b 1 3 a 3 ) = 3a b 2 +3 b 3 6a b 2 2 b 3 3 a 3 3 a 2 b+6 a 2 b+2 a 3 6 = b 3 3a b 2 +3 a 2 b a 3 6 = 1 6 ( ba ) 3

    4. 直線AQの方程式。

      S 2 = a a+b 2 ( x 2 ( 2ax a 2 ) )dx + a+b 2 b ( x 2 ( 2bx b 2 ) )dx = a a+b 2 ( x 2 2ax+ a 2 )dx + a+b 2 b ( x 2 2bx+ b 2 )dx = a a+b 2 ( xa ) 2 dx + a+b 2 b ( xb ) 2 dx = [ 1 3 ( xa ) 3 ] a a+b 2 + [ 1 3 ( xb ) 3 ] a+b 2 b = 1 3 ( [ ( xa ) 3 ] a a+b 2 + [ ( xb ) 3 ] a+b 2 b ) = 1 3 ( ( a+b 2 a ) 3 ( a+b 2 b ) 3 ) = 1 3 ( ( ba 2 ) 3 ( ab 2 ) 3 ) = 1 3 ( ( ba 2 ) 3 + ( ba 2 ) 3 ) = 1 3 ( 2 ( ba 2 ) 3 ) = 1 3 ( ( ba ) 3 4 ) = 1 12 ( ba ) 3

    5. 点Pは線分MQの中点なので、△PABの面積は三角形QABの面積の半分。

      S 3 = 1 2 ( S 1 + S 2 ) = 1 2 ( 1 6 ( ba ) 3 + 1 12 ( ba ) 3 ) = 1 2 · 3 12 ( ba ) 3 = 1 8 ( ba ) 3

    6. S 1 : S 2 : S 3 = 1 6 ( ba ) 3 : 1 12 ( ba ) 3 : 1 8 ( ba ) 3 = 1 6 : 1 12 : 1 8 =4:2:3

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, Derivative, solve

print('8.')
x, a, b = symbols('x a b')
f = x ** 2
M = ((a + b) / 2, f.subs({x: (a + b) / 2}))
f1 = Derivative(f, x, 1)
fa = f1.subs({x: a}) * (x - a) + f.subs({x: a})
fb = f1.subs({x: b}) * (x - b) + f.subs({x: b})

Qx = solve(fa - fb, x)[0]
Q = (Qx, fa.subs({x: Qx}))

for t in [M, Q]:
    pprint(t[0].doit().factor())

入出力結果(Terminal, Jupyter(IPython))

$ ./sample8.py
8.
a + b
─────
  2  
a + b
─────
  2  
$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-10">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="10">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-10">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="10">
<br>
<label for="a0">a = </label>
<input id="a0" type="number" value="-1">
<label for="b0">b = </label>
<input id="b0" type="number" value="2">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample8.js"></script>

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_a0 = document.querySelector('#a0'),
    input_b0 = document.querySelector('#b0'),    
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_a0, input_b0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f = (x) => x ** 2,
    f1 = (x) => 2 * x,
    g = (x0) => (x) => f1(x0) * (x - x0) + f(x0);

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        a0 = parseFloat(input_a0.value),
        b0 = parseFloat(input_b0.value);
        

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }
    
    let points = [],
        fa = g(a0),
        fb = g(b0),
        lines = [[a0, f(a0), b0, f(b0), 'blue'],
                 [a0, f(a0), 0, 0, 'blue'],
                 [0, 0, b0, f(b0), 'blue']],
        fns = [[f, 'green']],
        fns1 = [[fa, 'blue'],
                [fb, 'blue']],
        fns2 = [];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;
        
        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








0 コメント:

コメントを投稿