Loading [MathJax]/jax/output/CommonHTML/jax.js

2017年9月24日日曜日

学習環境

集合・位相入門 (松坂 和夫(著)、岩波書店)の第1章(集合と写像)、2(集合間の演算)、問題6、7を取り組んでみる。


  1. A(BC)=(AB)(AC)=(AB)C

    1. AΔB=(AB)(BA)=(BA)(AB)=BΔA

    2. (AB)(AB)=(AB)(AB)c=(AB)(AcBc)=(A(AcBc))(B(AcBc))=((AAc)(ABc))((BAc)(BBc))=(ϕ(ABc))((BAc)ϕ)=(ABc)(BAc)=(ABc)(AcB)

    3. (AΔB)ΔC=((ABc)(AcB))ΔC=(((ABc)(AcB))Cc)(((ABc)(AcB))cC)=((ABcCc)(AcBCc))(((ABc)c(AcB)c)C)=((ABcCc)(AcBCc))(((AcB)(ABc))C)=((ABcCc)(AcBCc))(((AcB)(ABc))C)=((ABcCc)(AcBCc))(((Ac(ABc))(B(ABc)))C)=((ABcCc)(AcBCc))(((AcBc)(BA))C)=((ABcCc)(AcBCc))((AcBcC)(ABC))=(ABcCc)(AcBCc)(AcBcC)(ABC)AΔ(BΔC)=AΔ((BCc)(BcC))=(A((BCc)(BcC))c)(Ac((BCc)(BcC)))=(A((BCc)c(BcC)c))((AcBCc)(AcBcC))=(A((BcC)(BCc)))((AcBCc)(AcBcC))=(A(((BcC)B)((BcC)Cc)))((AcBCc)(AcBcC))=(A((BC)(BcCc)))((AcBCc)(AcBcC))=((ABC)(ABcCc))((AcBCc)(AcBcC))=(ABC)(ABcCc)(AcBCc)(AcBcC)(AΔB)ΔC=AΔ(BΔC)

    4. A(BΔC)=A((BCc)(BcC))=(ABCc)(ABcC)(AB)Δ(AC)=((AB)(AC)c)((AB)c(AC))=((AB)(AcCc))((AcBc)(AC))=(ABCc)(ABcC)

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from matplotlib_venn import venn3_unweighted
import matplotlib.pyplot as plt

from sympy import pprint, FiniteSet, Interval

print('6.')

X = FiniteSet(*range(7))
A = FiniteSet(*range(5))
B = FiniteSet(*range(6))
C = FiniteSet(*range(7))
for X0 in [X, A, B, C]:
    pprint(X0)

print(A.is_subset(C))
print(A | (B & C) == (A | B) & C)

venn3_unweighted(subsets=(A, B, C))
plt.savefig('sample6.svg')

入出力結果(Terminal, Jupyter(IPython))

$ ./sample6.py
6.
{0, 1, 2, 3, 4, 5, 6}
{0, 1, 2, 3, 4}
{0, 1, 2, 3, 4, 5}
{0, 1, 2, 3, 4, 5, 6}
True
True
$

0 コメント:

コメントを投稿