学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第20章(面積、体積、長さ - 積分法の応用)、20.2(体積)、回転体の体積、問24.を取り組んでみる。
球体の中心を通る断面の円、その円を含む平面を考える。
x軸を2平面の垂直、y軸を2平面に平行にとる。円の中心を原点、半径r1の切り口の円のx座標をx1、半径r2の切り口の円のx座標をx2、x1 ≤ x2とする。
すると、x2 = x1 + hとなる。
また、球体の半径をrとする。(-r ≤ x1 ≤ x2 ≤ r)すると、円の方程式は次のようになる。
また、r1、r2が切り口における半径なので、次のことが成り立つ。
体積を求める。
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, Integral, pi, solve, sqrt print('24.') r1, r2, h = symbols('r1 r2 h', nonnegative=True) x, x1 = symbols('x x1', real=True) x2 = x1 + h r = sqrt(x1 ** 2 + r1 ** 2) x10 = solve((x1 ** 2 + r1 ** 2) - (x2 ** 2 + r2 ** 2), x1)[0] pprint(x10) f = r ** 2 - x ** 2 pprint(f) V = pi * Integral(f, (x, x1, x2)).subs({x1:x10}) for t in [V, V.doit().factor()]: pprint(t) print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample24.py 24. 2 2 2 - h + r₁ - r₂ ──────────────── 2⋅h 2 2 2 r₁ - x + x₁ 2 2 2 - h + r₁ - r₂ h + ──────────────── 2⋅h ⌠ ⎮ ⎛ 2⎞ ⎮ ⎜ ⎛ 2 2 2⎞ ⎟ ⎮ ⎜ 2 2 ⎝- h + r₁ - r₂ ⎠ ⎟ π⋅ ⎮ ⎜r₁ - x + ───────────────────⎟ dx ⎮ ⎜ 2 ⎟ ⎮ ⎝ 4⋅h ⎠ ⌡ 2 2 2 - h + r₁ - r₂ ──────────────── 2⋅h ⎛ 2 2 2⎞ π⋅h⋅⎝h + 3⋅r₁ + 3⋅r₂ ⎠ ──────────────────────── 6 $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> <label for="x3">x = </label> <input id="x3" type="number" value="-2"> <label for="h0">h = </label> <input id="h0" type="number" value="5"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample24.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_x3 = document.querySelector('#x3'), input_h0 = document.querySelector('#h0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_x3, input_h0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f1 = (x) => Math.sqrt(10 ** 2 - x ** 2), f2 = (x) => -Math.sqrt(10 ** 2 - x ** 2); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), x3 = parseFloat(input_x3.value), h0 = parseFloat(input_h0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [[x3, y1, x3, y2, 'red'], [x3 + h0, y1, x3 + h0, y2, 'red']], fns = [[f1, 'green'], [f2, 'green']], fns1 = [], fns2 = []; fns.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); fns1.forEach((o) => { let [fn, color] = o; lines.push([x1, fn(x1), x2, fn(x2), color]); }); fns2.forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = fn(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿