2017年10月12日木曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第20章(面積、体積、長さ - 積分法の応用)、20.3(曲線の長さ)、媒介変数で表された曲線の長さ、問27.を取り組んでみる。


  1. 0 2π ( d dt ( a cos 3 t ) ) 2 + ( d dt ( a sin 3 t ) ) 2 dt = 0 2π ( a3 cos 2 t( sint ) ) 2 + ( a3 sin 2 tcost ) 2 dt = 0 2π ( 3asintcost ) 2 ( ( cost ) 2 + ( sint ) 2 ) dt = 0 2π ( 3asintcost ) 2 ( cos 2 t+ sin 2 t ) dt = 0 2π ( 3asintcost ) 2 dt =3a 0 2π ( sintcost ) 2 dt =3a 0 2π ( 1 2 ·2sintcost ) 2 dt =3a 0 2π ( 1 2 ·sin2t ) 2 dt = 3a 2 0 2π ( sin2t ) 2 dt = 3a 2 ( 0 π 2 sin2tdt + π 2 π ( sin2t )dt + π 3 2 π sin2tdt + 3 2 π 2π ( sin2t )dt ) = 3a 2 ( 0 π 2 sin2tdt + 0 π 2 sin2tdt + 0 π 2 sin2tdt + 0 π 2 sin2tdt ) = 3a 2 ·4 0 π 2 sin2tdt =6a [ 1 2 cos2t ] 0 π 2 =3a( cosπcos0 ) =3a( 11 ) =6a

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, Integral, Derivative, sin, cos, sqrt, pi, solve, plot

print('27.')

a = symbols('a', positive=True)
t = symbols('t')
I = 3 * a / 2 * 4 * Integral(sin(2 * t), (t, 0, pi / 2))
for o in [I, I.doit()]:
    pprint(o)
    print()

x = symbols('x')
y = a * sin(t) ** 3
s = solve(x - a * cos(t) ** 3, t)
for t0 in s:
    pprint(y.subs({t:t0}))
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample27.py
27.
    π            
    ─            
    2            
    ⌠            
6⋅a⋅⎮ sin(2⋅t) dt
    ⌡            
    0            

6⋅a

             3/2
   ⎛     2/3⎞   
   ⎜    x   ⎟   
-a⋅⎜1 - ────⎟   
   ⎜     2/3⎟   
   ⎝    a   ⎠   

                                    3/2
   ⎛                          2    ⎞   
   ⎜  ⎛   3 ___         3 ___⎞     ⎟   
   ⎜  ⎜   ╲╱ x     √3⋅ⅈ⋅╲╱ x ⎟     ⎟   
-a⋅⎜- ⎜- ─────── - ──────────⎟  + 1⎟   
   ⎜  ⎜    3 ___      3 ___  ⎟     ⎟   
   ⎝  ⎝  2⋅╲╱ a     2⋅╲╱ a   ⎠     ⎠   

                                    3/2
   ⎛                          2    ⎞   
   ⎜  ⎛   3 ___         3 ___⎞     ⎟   
   ⎜  ⎜   ╲╱ x     √3⋅ⅈ⋅╲╱ x ⎟     ⎟   
-a⋅⎜- ⎜- ─────── + ──────────⎟  + 1⎟   
   ⎜  ⎜    3 ___      3 ___  ⎟     ⎟   
   ⎝  ⎝  2⋅╲╱ a     2⋅╲╱ a   ⎠     ⎠   

            3/2
  ⎛     2/3⎞   
  ⎜    x   ⎟   
a⋅⎜1 - ────⎟   
  ⎜     2/3⎟   
  ⎝    a   ⎠   

                                   3/2
  ⎛                          2    ⎞   
  ⎜  ⎛   3 ___         3 ___⎞     ⎟   
  ⎜  ⎜   ╲╱ x     √3⋅ⅈ⋅╲╱ x ⎟     ⎟   
a⋅⎜- ⎜- ─────── - ──────────⎟  + 1⎟   
  ⎜  ⎜    3 ___      3 ___  ⎟     ⎟   
  ⎝  ⎝  2⋅╲╱ a     2⋅╲╱ a   ⎠     ⎠   

                                   3/2
  ⎛                          2    ⎞   
  ⎜  ⎛   3 ___         3 ___⎞     ⎟   
  ⎜  ⎜   ╲╱ x     √3⋅ⅈ⋅╲╱ x ⎟     ⎟   
a⋅⎜- ⎜- ─────── + ──────────⎟  + 1⎟   
  ⎜  ⎜    3 ___      3 ___  ⎟     ⎟   
  ⎝  ⎝  2⋅╲╱ a     2⋅╲╱ a   ⎠     ⎠   

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">
<br>
<label for="a0">a0 = </label>
<input id="a0" type="number" min="0" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample27.js"></script>
 

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_a0 = document.querySelector('#a0'),    
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_a0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        a0 = parseFloat(input_a0.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }
    
    let points = [],
        lines = [],
        f1 = (x) => -a0 * Math.sqrt((1 - ((x / a0) ** 2) ** (1 / 3)) ** 3),
        f2 = (x) => -f1(x),
        fns = [[f1, 'red'],
               [f2, 'green']],
        fns1 = [],
        fns2 = [];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;
        
        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








0 コメント:

コメントを投稿