2017年10月4日水曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第20章(面積、体積、長さ - 積分法の応用)、20.2(体積)、回転体の体積、問19.を取り組んでみる。


    1. y2=b2(1x2a2)x2a2+0b2=1x2=a2πaay2dx=2πa0b2(1x2a2)dx=2b2π[x13a2x3]a0=2b2π(a13a)=2b2π·23a=43πab2

    2. x2=a2(1y2b2)0a2+y2b2=1y2=b22πb0x2dy=2πb0a2(1y2b2)dy=2πa2[yy33b2]b0=2πa2(b13b)=2πa2·2b3=43πa2b

    3. 0=x2+h2x2=h2πhhy2dx=πhh(x42h2x2+h4)dx=2πh0(x42h2x2+h4)dx=2π[15x523h2x3+h4x]h0=2π(15h523h5+h5)=2π·310+1515h5=1615πh5

    4. y=0+h2y=h2πh20x2dy=πh20(h2y)dy=π[h2yy22]h20=π(h4h42)=12πh4

    5. 平行移動。

      g=((x+a+b2)a)((x+a+b2)b)=(xab2)(x+ab2)

      体積を求める。

      πbay2dx=πba2ba2g2dx=πba2ba2(x2(ab2)2)2dx=πba2ba2(x42(ab2)2x2+(ab2)4)dx=2πba20(x42(ab2)2x2+(ab2)4)dx=2π[15x523(ab2)2x3+(ab2)4x]ba20=2π(1523+1)(ba2)5=π·310+1515·(ba)524=π815·(ba)524=π30(ba)5

    6. ππ0sin2xdx=ππ0cos(xx)cos(x+x)2dx=ππ0cos0cos2x2dx=π2π0(1cos2x)dx=π2[x12sin2x]π0=π2((π12sin2π)(012sin0))=π2π=π22

    7. cosx=sinxsinxsinx=1tanx=1x=π4ππ40cos2xdxππ40sin2xdx=ππ40(cos2xsin2x)dx=ππ40(2cos2x1)dx=π(2π40cos2xdxπ401dx)=π(2π4012(cos(x+x)+cos(xx))dx[x]π40)=π(π40(cos2x+cos0)dxπ4)=π(π40(cos2x+1)dxπ4)=π([12sin2x+x]π40π4)=π(12sinπ2+π412sin00π4)=π2

コード(Emacs)

Python 3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from sympy import pprint, symbols, Integral, pi, sin, cos

x, a, b, h = symbols('x a b h')

fs = [(b ** 2 * (1 - x ** 2 / a ** 2), (-a, a)),
      (a ** 2 * (1 - x ** 2 / b ** 2), (-b, b)),
      ((-x ** 2 + h ** 2) ** 2, (-h, h)),
      (h ** 2 - x, (0, h ** 2)),
      (((x - a) * (x - b)) ** 2, (a, b)),
      (cos(x) ** 2 - sin(x) ** 2, (0, pi / 4))]

for i, (f, (x1, x2)) in enumerate(fs, 1):
    print(f'({i})')
    I = Integral(f * pi, (x, x1, x2))
    for t in [I, I.doit().factor()]:
        pprint(t)
        print()
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample19.py
(1)
a                  
⌠                  
⎮       ⎛     2⎞   
⎮     2 ⎜    x ⎟   
⎮  π⋅b ⋅⎜1 - ──⎟ dx
⎮       ⎜     2⎟   
⎮       ⎝    a ⎠   
⌡                  
-a                 

       2
4⋅π⋅a⋅b 
────────
   3    


(2)
b                  
⌠                  
⎮       ⎛     2⎞   
⎮     2 ⎜    x ⎟   
⎮  π⋅a ⋅⎜1 - ──⎟ dx
⎮       ⎜     2⎟   
⎮       ⎝    b ⎠   
⌡                  
-b                 

     2  
4⋅π⋅a ⋅b
────────
   3    


(3)
h                 
⌠                 
⎮             2   
⎮    ⎛ 2    2⎞    
⎮  π⋅⎝h  - x ⎠  dx
⌡                 
-h                

      5
16⋅π⋅h 
───────
   15  


(4)
 2              
h               
⌠               
⎮    ⎛ 2    ⎞   
⎮  π⋅⎝h  - x⎠ dx
⌡               
0               

   4
π⋅h 
────
 2  


(5)
b                         
⌠                         
⎮           2         2   
⎮ π⋅(-a + x) ⋅(-b + x)  dx
⌡                         
a                         

          5 
-π⋅(a - b)  
────────────
     30     


(6)
π                           
─                           
4                           
⌠                           
⎮   ⎛     2         2   ⎞   
⎮ π⋅⎝- sin (x) + cos (x)⎠ dx
⌡                           
0                           

π
─
2


$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-10">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="10">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-10">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="10">
<br>
<label for="a0">a = </label>
<input id="a0" type="number" value="-2">
<label for="b0">b = </label>
<input id="b0" type="number" value="3">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample19.js"></script>

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_a0 = document.querySelector('#a0'),
    input_b0 = document.querySelector('#b0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_a0, input_a0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        a0 = parseFloat(input_a0.value),
        b0 = parseFloat(input_b0.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }
    
    let points = [],
        lines = [[a0, y1, a0, y2, 'red'],
                 [b0, y1, b0, y2, 'red'],
                 [-(a0 - b0) / 2, y1, -(a0 - b0) / 2, y2, 'green'],
                 [(a0 - b0) / 2, y1, (a0 - b0) / 2, y2, 'green']],
        f = (x) => (x - a0) * (x - b0),
        g = (x) => (x - (a0 - b0) / 2) * (x + (a0 - b0) / 2),
        fns = [[f, 'blue'],
               [g, 'orange']],
        fns1 = [],
        fns2 = [];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;
        
        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
-10-8-6-4-20246810-10-8-6-4-20246810
(x) => (x - a0) * (x - b0),blue
(x) => (x - (a0 - b0) / 2) * (x + (a0 - b0) / 2),orange





0 コメント:

コメントを投稿