Loading [MathJax]/jax/output/HTML-CSS/jax.js

2017年10月11日水曜日

学習環境

数学読本〈5〉微分法の応用/積分法/積分法の応用/行列と行列式(松坂 和夫(著)、岩波書店)の第20章(面積、体積、長さ - 積分法の応用)、20.3(曲線の長さ)、曲線 y = f(x) (a ≤ x ≤ b)の長さ、問26.を取り組んでみる。


    1. a01+(exex2)2dx=a01+e2x2+e2x22dx=12a022+e2x2+e2xdx=12a02+e2x+e2xdx=12a0(ex+ex)2dx=12a0(ex+ex)dx=12[exex]a0=12((eaea)(11))=eaea2

    2. 101+(2x)2dxu=2xdudx=2x=0u=0x=1u=212201+u2duu=etet2dudt=et+et2u=0t=0u=2etet2=2etet=4(et)21=4et(et)24et1=0et>0et=2+4+1=2+5loget=log(2+5)t=log(2+5)12201+u2du=12log(2+5)01+(etet2)2et+et2dt=12log(2+5)04+e2t+e2t222et+et2dt=123log(2+5)0e2t+e2t+2(et+et)dt=123log(2+5)0(et+et)2(et+et)dt=123log(2+5)0(et+et)(et+et)dt=123log(2+5)0(et+et)2dt=123log(2+5)0(e2t+2+e2t)dt=123[12e2t+2t12e2t]log(2+5)0=123((12e2log(2+5)+2log(2+5)12e2log(2+5))(1212))=123(12(2+5)2+2log(2+5)12(2+5)2)=123(12(4+5+45)+2log(2+5)12(4+5+45))=123(12(9+45)+2log(2+5)12(9+45))=123(12(9+45)+2log(2+5)9452(8116·5))=123(12(9+45)+2log(2+5)9452(8180))=123(12(9+45)+2log(2+5)9452)=123(852+2log(2+5))=14(25+log(2+5))

    3. 311+(1x)2dx=31x2+1xdxt=x2+1dtdx=12(x2+1)122x=xx2+1=xtx=1t=2x=3t=10102txtxdt=102t2x2dtt=x2+1t2=x2+1x2=t21102t2x2dt=102t2t21dt=102t21+1t21dt=102(1+1t21)dt=1021dt+1021t21dt=[t]102+1021(t+1)(t1)dt1(t+1)(t1)=At+1+Bt11(t+1)(t1)=AtA+Bt+B(t+1)(t1)1(t+1)(t1)=(A+B)t+(BA)(t+1)(t1)A+B=0BA=12B=1B=12A=12[t]102+1021(t+1)(t1)dt=102+12102(1t+1+1t1)dt=102+12[log(t+1)+log(t1)]102=102+12((log(10+1)+log(101))(log(2+1)+log(21)))=102+12log(101)(2+1)(10+1)(21)=102+12log(101)2(2+1)2(101)(21)=102+12log(101)2(2+1)29=102+12log((101)(2+1)3)2=102+log(101)(2+1)3

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, Integral, Derivative, exp, log, sqrt, plot

print('26.')

x, a, b = symbols('x a b')
L = lambda f: Integral(sqrt(1 + Derivative(f, x) ** 2), (x, a, b))

fs = [((exp(x) + exp(-x)) / 2, (0, a)),
      (x ** 2, (0, 1)),
      (log(x), (1, 3))]

for i, (f0, (a0, b0)) in enumerate(fs, 1):
    print(f'({i})')
    I = L(f0).subs({a:a0, b:b0})
    for t in [I, I.doit()]:
        pprint(t)
        print()
    p = plot(f0, show=False, legend=True)
    p.save(f'sample26_{i}.svg')
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample26.py
26.
(1)
a                               
⌠                               
⎮       _____________________   
⎮      ╱               2        
⎮     ╱  ⎛  ⎛ x    -x⎞⎞         
⎮    ╱   ⎜d ⎜ℯ    ℯ  ⎟⎟         
⎮   ╱    ⎜──⎜── + ───⎟⎟  + 1  dx
⎮ ╲╱     ⎝dx⎝2     2 ⎠⎠         
⌡                               
0                               

a                         
⌠                         
⎮    __________________   
⎮   ╱  2⋅x        -2⋅x    
⎮ ╲╱  ℯ    + 2 + ℯ      dx
⌡                         
0                         
──────────────────────────
            2             


(2)
1                        
⌠                        
⎮      _______________   
⎮     ╱         2        
⎮    ╱  ⎛d ⎛ 2⎞⎞         
⎮   ╱   ⎜──⎝x ⎠⎟  + 1  dx
⎮ ╲╱    ⎝dx    ⎠         
⌡                        
0                        

asinh(2)   √5
──────── + ──
   4       2 


(3)
3                            
⌠                            
⎮      ___________________   
⎮     ╱             2        
⎮    ╱  ⎛d         ⎞         
⎮   ╱   ⎜──(log(x))⎟  + 1  dx
⎮ ╲╱    ⎝dx        ⎠         
⌡                            
1                            

-√2 - asinh(1/3) + log(1 + √2) + √10


$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample26.js"></script>
 

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f = (x) => 1 / 2 * (Math.exp(x) + Math.exp(-x)),
    g = (x) => x ** 2,
    h = (x) => Math.log(x);
    
let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }
    
    let points = [],
        lines = [],
        fns = [[f, 'red'],
               [g, 'green'],
               [h, 'blue']],
        fns1 = [],
        fns2 = [];

    fns.forEach((o) => {
        let [fn, color] = o;
        for (let x = x1; x <= x2; x += dx) {
            let y = fn(x);

            if (Math.abs(y) < Infinity) {
                points.push([x, y, color]);
            }
        }
    });
    fns1.forEach((o) => {
        let [fn, color] = o;
        
        lines.push([x1, fn(x1), x2, fn(x2), color]);
    });
    fns2.forEach((o) => {
        let [fn, color] = o;

        for (let x = x1; x <= x2; x += dx0) {
            let g = fn(x);
            
            lines.push([x1, g(x1), x2, g(x2), color]);
        }        
    });
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');
    
    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');
    
    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();
-5-4-3-2-1012345-5-4-3-2-1012345
(x) => 1 / 2 * (Math.exp(x) + Math.exp(-x)),red
(x) => x ** 2,green
(x) => Math.log(x),blue




0 コメント:

コメントを投稿