学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第7章(逆関数)、4(逆正接関数)、練習問題5、6、7、8、9、10、11、12、13、14、15、16.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, sin, cos, asin, acos, atan, Derivative, sqrt x = symbols('x') fs = [atan(3 * x), atan(sqrt(x)), asin(x) + acos(x), x * asin(x), asin(sin(2 * x)), x ** 2 * atan(2 * x), sin(x) / asin(x), asin(cos(x) - x ** 2), atan(1 / x), atan(1 / 2 * x), (1 + asin(3 * x)) ** 3, sqrt((asin(2 * x) + atan(x ** 2)) ** 3)] for i, f in enumerate(fs, 5): print(f'{i}.') D = Derivative(f, x, 1) for t in [D, D.doit()]: pprint(t.factor()) print() print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample5.py 5. d ──(atan(3⋅x)) dx 3 ──────── 2 9⋅x + 1 6. d ──(atan(√x)) dx 1 ──────────── 2⋅√x⋅(x + 1) 7. d ──(acos(x) + asin(x)) dx 0 8. d ──(x⋅asin(x)) dx x ───────────── + asin(x) __________ ╱ 2 ╲╱ - x + 1 9. d ──(asin(sin(2⋅x))) dx 2⋅cos(2⋅x) ──────────────────── _________________ ╱ 2 ╲╱ - sin (2⋅x) + 1 10. d ⎛ 2 ⎞ ──⎝x ⋅atan(2⋅x)⎠ dx 2 2⋅x ──────── + 2⋅x⋅atan(2⋅x) 2 4⋅x + 1 11. d ⎛ sin(x)⎞ ──⎜───────⎟ dx⎝asin(x)⎠ cos(x) sin(x) ─────── - ────────────────────── asin(x) __________ ╱ 2 2 ╲╱ - x + 1 ⋅asin (x) 12. d ⎛ ⎛ 2 ⎞⎞ ──⎝-asin⎝x - cos(x)⎠⎠ dx -(2⋅x + sin(x)) ────────────────────────── ______________________ ╱ 2 ╱ ⎛ 2 ⎞ ╲╱ - ⎝x - cos(x)⎠ + 1 13. d ⎛ ⎛1⎞⎞ ──⎜atan⎜─⎟⎟ dx⎝ ⎝x⎠⎠ -1 ─────────── 2 ⎛ 1 ⎞ x ⋅⎜1 + ──⎟ ⎜ 2⎟ ⎝ x ⎠ 14. d ──(atan(0.5⋅x)) dx 0.5 ─────────── 2 0.25⋅x + 1 15. d ⎛ 3⎞ ──⎝(asin(3⋅x) + 1) ⎠ dx 2 9⋅(asin(3⋅x) + 1) ────────────────── ____________ ╱ 2 ╲╱ - 9⋅x + 1 16. ⎛ _________________________⎞ ⎜ ╱ 3 ⎟ d ⎜ ╱ ⎛ ⎛ 2⎞⎞ ⎟ ──⎝╲╱ ⎝asin(2⋅x) + atan⎝x ⎠⎠ ⎠ dx _________________________ ╱ 3 ⎛ 6⋅x 6 ⎞ ╱ ⎛ ⎛ 2⎞⎞ ⎜────── + ───────────────⎟⋅╲╱ ⎝asin(2⋅x) + atan⎝x ⎠⎠ ⎜ 4 ____________⎟ ⎜x + 1 ╱ 2 ⎟ ⎝ ╲╱ - 4⋅x + 1 ⎠ ──────────────────────────────────────────────────────── ⎛ ⎛ 2⎞⎞ 2⋅⎝asin(2⋅x) + atan⎝x ⎠⎠ iMac:dir4 kamimura$ ./sample5.py 5. d ──(atan(3⋅x)) dx 3 ──────── 2 9⋅x + 1 6. d ──(atan(√x)) dx 1 ──────────── 2⋅√x⋅(x + 1) 7. d ──(acos(x) + asin(x)) dx 0 8. d ──(x⋅asin(x)) dx __________ ╱ 2 x + ╲╱ - x + 1 ⋅asin(x) ───────────────────────── __________________ ╲╱ -(x - 1)⋅(x + 1) 9. d ──(asin(sin(2⋅x))) dx 2⋅cos(2⋅x) ────────────────────────────────── ________________________________ ╲╱ -(sin(2⋅x) - 1)⋅(sin(2⋅x) + 1) 10. d ⎛ 2 ⎞ ──⎝x ⋅atan(2⋅x)⎠ dx ⎛ 2 ⎞ 2⋅x⋅⎝4⋅x ⋅atan(2⋅x) + x + atan(2⋅x)⎠ ──────────────────────────────────── 2 4⋅x + 1 11. d ⎛ sin(x)⎞ ──⎜───────⎟ dx⎝asin(x)⎠ __________ ╱ 2 ╲╱ - x + 1 ⋅cos(x)⋅asin(x) - sin(x) ───────────────────────────────────── __________________ 2 ╲╱ -(x - 1)⋅(x + 1) ⋅asin (x) 12. d ⎛ ⎛ 2 ⎞⎞ ──⎝-asin⎝x - cos(x)⎠⎠ dx -(2⋅x + sin(x)) ───────────────────────────────────────── ______________________________________ ╱ ⎛ 2 ⎞ ⎛ 2 ⎞ ╲╱ -⎝x - cos(x) - 1⎠⋅⎝x - cos(x) + 1⎠ 13. d ⎛ ⎛1⎞⎞ ──⎜atan⎜─⎟⎟ dx⎝ ⎝x⎠⎠ -1 ────── 2 x + 1 14. d ──(atan(0.5⋅x)) dx 0.5 ───────────── 2 0.25⋅x + 1.0 15. d ⎛ 3 2 ⎞ ──⎝asin (3⋅x) + 3⋅asin (3⋅x) + 3⋅asin(3⋅x) + 1⎠ dx 2 9⋅(asin(3⋅x) + 1) ──────────────────────── ______________________ ╲╱ -(3⋅x - 1)⋅(3⋅x + 1) 16. ⎛ ________________________________________________________________________ d ⎜ ╱ 3 2 ⎛ 2⎞ 2⎛ 2⎞ 3⎛ 2⎞ ──⎝╲╱ asin (2⋅x) + 3⋅asin (2⋅x)⋅atan⎝x ⎠ + 3⋅asin(2⋅x)⋅atan ⎝x ⎠ + atan ⎝x ⎠ dx ⎞ ⎟ ⎠ _________________________ ⎛ ____________ ⎞ ╱ 3 ⎜ 4 ╱ 2 ⎟ ╱ ⎛ ⎛ 2⎞⎞ 3⋅⎝x + x⋅╲╱ - 4⋅x + 1 + 1⎠⋅╲╱ ⎝asin(2⋅x) + atan⎝x ⎠⎠ ──────────────────────────────────────────────────────────── ______________________ ⎛ 4 ⎞ ⎛ ⎛ 2⎞⎞ ╲╱ -(2⋅x - 1)⋅(2⋅x + 1) ⋅⎝x + 1⎠⋅⎝asin(2⋅x) + atan⎝x ⎠⎠ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="dx0">dx0 = </label> <input id="dx0" type="number" min="0" step="0.0001" value="0.1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample5.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_dx0 = document.querySelector('#dx0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_dx0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => Math.asin(x), g = (x) => Math.acos(x), h = (x) => Math.atan(x), f1 = (x) => 1 / Math.sqrt(1 - x ** 2), g1 = (x) => -1 / Math.sqrt(1 - x ** 2), h1 = (x) => 1 / (1 + x ** 2); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), dx0 = parseFloat(input_dx0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [], fns = [[f, 'red'], [g, 'green'], [h, 'blue'], [f1, 'orange'], [g1, 'brown'], [h1, 'skyblue']], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿