学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第7章(逆関数)、4(逆正接関数)、練習問題17、18、19、20、21.を取り組んでみる。
コード(Emacs)
Python 3
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sympy import pprint, symbols, asin, acos, atan, Derivative, sqrt, Rational x = symbols('x') fs = [(asin(x), 1 / sqrt(2)), (acos(x), 1 / sqrt(2)), (atan(2 * x), sqrt(3) / 2), (atan(x), -1), (asin(x), -Rational(1, 2))] for i, (f, x0) in enumerate(fs, 17): print(f'{i}.') D = Derivative(f, x, 1) f1 = D.doit() g = f1.subs({x: x0}) * (x - x0) + f.subs({x: x0}) for t in [f, D, f1, g]: pprint(t) print() print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample17.py 17. asin(x) d ──(asin(x)) dx 1 ───────────── __________ ╱ 2 ╲╱ - x + 1 ⎛ √2⎞ π √2⋅⎜x - ──⎟ + ─ ⎝ 2 ⎠ 4 18. acos(x) d ──(acos(x)) dx -1 ───────────── __________ ╱ 2 ╲╱ - x + 1 ⎛ √2⎞ π - √2⋅⎜x - ──⎟ + ─ ⎝ 2 ⎠ 4 19. atan(2⋅x) d ──(atan(2⋅x)) dx 2 ──────── 2 4⋅x + 1 x √3 π ─ - ── + ─ 2 4 3 20. atan(x) d ──(atan(x)) dx 1 ────── 2 x + 1 x π 1 ─ - ─ + ─ 2 4 2 21. asin(x) d ──(asin(x)) dx 1 ───────────── __________ ╱ 2 ╲╱ - x + 1 2⋅√3⋅(x + 1/2) π ────────────── - ─ 3 6 $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.01"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample17.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f1 = (x) => Math.asin(x), g1 = (x) => Math.sqrt(2) * x - 1 + Math.PI / 4, f2 = (x) => Math.acos(x), g2 = (x) => -Math.sqrt(2) * x + 1 + Math.PI / 4, f3 = (x) => Math.atan(2 * x), g3 = (x) => 1 / 2 * x - Math.sqrt(3) / 4 + Math.PI / 3, f4 = (x) => Math.atan(x), g4 = (x) => 1 / 2 * x + 1 / 2 - Math.PI / 4, f5 = (x) => Math.asin(x), g5 = (x) => 2 / Math.sqrt(3) * x + 1 / Math.sqrt(3) - Math.PI / 6; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [[1 / Math.sqrt(2), y1, 1 / Math.sqrt(2), y2, 'red'], [Math.sqrt(3) / 2, y1, Math.sqrt(3) / 2, y2, 'blue'], [-1, y1, -1, y2, 'orange'], [-1 / 2, y1, -1 / 2, y2, 'skyblue']], fns = [[f1, 'red'], [g1, 'red'], [f2, 'green'], [g2, 'green'], [f3, 'blue'], [g3, 'blue'], [f4, 'orange'], [g4, 'orange'], [f5, 'skyblue'], [g5, 'skyblue']], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿