学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- 数式入力ソフト(TeX, MathML): MathType
- MathML対応ブラウザ: Firefox、Safari
- MathML非対応ブラウザ(Internet Explorer, Microsoft Edge, Google Chrome...)用JavaScript Library: MathJax
- 参考書籍
線型代数入門(松坂 和夫(著)、岩波書店)の第3章(線型写像)、6(数ベクトルの内積、行列と列ベクトルの積)、問題3、4.を取り組んでみる。
線型写像Lを表すただ1つの 1 × n 行列をAとする。
その1行目の行ベクトルをaとすれば、問題の命題が成り立つ。
標準基底の原点のまわりの角θの回転について考える。
以上のことと、回転は線型であることを利用して回転の行列を求める。
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, Matrix, sin, cos, pi import random print('3.') θ = symbols('θ') A = Matrix([[cos(θ), -sin(θ)], [sin(θ), cos(θ)]]) pprint(A) pprint(A * Matrix([1, 0])) pprint(A * Matrix([0, 1])) for _ in range(5): x = random.randrange(10) y = random.randrange(10) X = Matrix([x, y]) pprint(X) for θ0 in [pi / 4, pi / 2, pi]: pprint(θ0) pprint((A * X).subs({θ: θ0})) print() print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample3.py 3. ⎡cos(θ) -sin(θ)⎤ ⎢ ⎥ ⎣sin(θ) cos(θ) ⎦ ⎡cos(θ)⎤ ⎢ ⎥ ⎣sin(θ)⎦ ⎡-sin(θ)⎤ ⎢ ⎥ ⎣cos(θ) ⎦ ⎡1⎤ ⎢ ⎥ ⎣0⎦ π ─ 4 ⎡√2⎤ ⎢──⎥ ⎢2 ⎥ ⎢ ⎥ ⎢√2⎥ ⎢──⎥ ⎣2 ⎦ π ─ 2 ⎡0⎤ ⎢ ⎥ ⎣1⎦ π ⎡-1⎤ ⎢ ⎥ ⎣0 ⎦ ⎡0⎤ ⎢ ⎥ ⎣0⎦ π ─ 4 ⎡0⎤ ⎢ ⎥ ⎣0⎦ π ─ 2 ⎡0⎤ ⎢ ⎥ ⎣0⎦ π ⎡0⎤ ⎢ ⎥ ⎣0⎦ ⎡3⎤ ⎢ ⎥ ⎣2⎦ π ─ 4 ⎡ √2 ⎤ ⎢ ── ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢5⋅√2⎥ ⎢────⎥ ⎣ 2 ⎦ π ─ 2 ⎡-2⎤ ⎢ ⎥ ⎣3 ⎦ π ⎡-3⎤ ⎢ ⎥ ⎣-2⎦ ⎡9⎤ ⎢ ⎥ ⎣5⎦ π ─ 4 ⎡2⋅√2⎤ ⎢ ⎥ ⎣7⋅√2⎦ π ─ 2 ⎡-5⎤ ⎢ ⎥ ⎣9 ⎦ π ⎡-9⎤ ⎢ ⎥ ⎣-5⎦ ⎡8⎤ ⎢ ⎥ ⎣1⎦ π ─ 4 ⎡7⋅√2⎤ ⎢────⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢9⋅√2⎥ ⎢────⎥ ⎣ 2 ⎦ π ─ 2 ⎡-1⎤ ⎢ ⎥ ⎣8 ⎦ π ⎡-8⎤ ⎢ ⎥ ⎣-1⎦ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample3.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [[0, 0, 8, 1, 'red'], [0, 0, 7 * Math.sqrt(2) / 2, 9 * Math.sqrt(2) / 2, 'green'], [0, 0, -1, 8, 'blue'], [0, 0, -8, -1, 'orange']], fns = [], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿