2017年10月7日土曜日

学習環境

ラング線形代数学(上)(S.ラング (著)、芹沢 正三 (翻訳)、ちくま学芸文庫)の1章(R^n におけるベクトル)、5(直線と平面)、練習問題11.を取り組んでみる。


  1. L:X=P+tA ( x 1 , x 2 , x 3 , x 4 )=( 1,1,3,1 )+t( 1,3,2,1 ) ( x 1 , x 2 , x 3 , x 4 )=( 1+t,13t,3+2t,1+t )

    1. ( ( 1+t )1 ) 2 + ( ( 13t )1 ) 2 + ( ( 3+2t )( 1 ) ) 2 + ( ( 1+t )2 ) 2 = t 2 + ( 3t2 ) 2 + ( 2t+4 ) 2 + ( t1 ) 2 = t 2 +9 t 2 +12t+4+4 t 2 +16t+16+ t 2 2t+1 = 15 t 2 +26t+21

    2. 15 t 2 +26t+21 =15( t 2 + 26 15 t+ 21 15 ) =15( ( t+ 13 15 ) 2 + 21 15 ( 13 15 ) 2 ) t= 13 15 15( 21 15 ( 13 15 ) 2 ) = 21 13 2 15 = 315169 15 = 146 15

    3. X 0 =( 1+( 13 15 ),13( 13 15 ),3+2( 13 15 ),1+( 13 15 ) ) =( 2 15 ,1+ 39 15 ,3 26 15 , 2 15 ) =( 2 15 , 24 15 , 19 15 , 2 15 ) ( X 0 Q )·A =( ( 2 15 , 24 15 , 19 15 , 2 15 )( 1,1,1,2 ) )·( 1,3,2,1 ) =( 13 15 , 9 15 , 34 15 , 28 15 )·( 1,3,2,1 ) = 1 15 ( 13,9,34,28 )·( 1,3,2,1 ) = 1 15 ( 1327+6828 ) =0

      よって、直線に垂直である。

コード(Emacs)

Python 3

#!/usr/bin/env python3

from sympy import pprint, symbols, Matrix, Rational

print('10.')
P = Matrix([1, -1, 3, 1])
Q = Matrix([1, 1, -1, 2])
A = Matrix([1, -3, 2, 1])
t = symbols('t', real=True)
X = P + t * A

for t in [P, Q, A, X]:
    pprint(t.T)
    print()

print('(a)')
pprint((Q - X).norm())
pprint((Q - X).norm().expand())
pprint((Q - X).norm().expand().factor())

print('(b)')
X0 = P + Rational(-13, 15) * A
pprint((Q - X0).norm())

print('(c)')
pprint((X0 - Q).dot(A))

入出力結果(Terminal, Jupyter(IPython))

$ ./sample11.py
10.
[1  -1  3  1]

[1  1  -1  2]

[1  -3  2  1]

[t + 1  -3⋅t - 1  2⋅t + 3  t + 1]

(a)
   _________________________________________
  ╱  2          2            2            2 
╲╱  t  + (t - 1)  + (2⋅t + 4)  + (3⋅t + 2)  
   ___________________
  ╱     2             
╲╱  15⋅t  + 26⋅t + 21 
   ___________________
  ╱     2             
╲╱  15⋅t  + 26⋅t + 21 
(b)
√2190
─────
  15 
(c)
0
$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.0001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-10">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="10">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-10">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="10">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample11.js"></script>    

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f = (x) => Math.sqrt(15 * x ** 2 + 26 * x + 21);

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    

    let points = [],
        lines = [[-13 / 15, y1, -13 / 15, y2, 'red'],
                 [x1, Math.sqrt(146 / 15), x2, Math.sqrt(146 / 15), 'blue']],
        fns = [[f, 'green']],
        fns1 = [],
        fns2 = [];

    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                points.push([x, y, color]);
            }
        });
    
    fns2
        .forEach((o) => {
            let [f, color] = o;

            for (let x = x1; x <= x2; x += dx0) {
                let g = f(x);
                lines.push([x1, g(x1), x2, g(x2), color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿