学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第8章(指数関数と対数関数)、2(指数関数)、練習問題31.を取り組んでみる。
よって、 f は問題の区間で増加である。
x が 1に近づくとき、 f (x)は限りなく大きくなる。
また、 x が-1に近づくとき、 f(x)は限りなく小さくなる。
よって、
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, log, Derivative, Rational, plot print('31.') x = symbols('x') f = Rational(1, 4) * (log((1 + x) / (1 - x)) + 1 / (1 - x) - 1 / (1 + x)) for n in range(1, 3): D = Derivative(f, x, n) for t in [D, D.doit().factor()]: pprint(t) print() print() p = plot(f, ylim=(-10, 10), show=False, legend=True) p.save('sample31.svg')
入出力結果(Terminal, Jupyter(IPython))
$ ./sample31.py && open sample31.svg 31. ⎛ ⎛x + 1 ⎞ ⎞ ⎜log⎜──────⎟ ⎟ d ⎜ ⎝-x + 1⎠ 1 1 ⎟ ──⎜─────────── - ───────── + ──────────⎟ dx⎝ 4 4⋅(x + 1) 4⋅(-x + 1)⎠ 1 ───────────────── 2 2 (x - 1) ⋅(x + 1) ⎛ ⎛x + 1 ⎞ ⎞ 2⎜log⎜──────⎟ ⎟ d ⎜ ⎝-x + 1⎠ 1 1 ⎟ ───⎜─────────── - ───────── + ──────────⎟ 2⎝ 4 4⋅(x + 1) 4⋅(-x + 1)⎠ dx -4⋅x ───────────────── 3 3 (x - 1) ⋅(x + 1) $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample31.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => 1 / 4 * (Math.log((1 + x) / (1 - x)) + 1 / (1 - x) - 1 / (1 + x)), f1 = (x) => 1 / (1 - x ** 2) ** 2, f2 = (x) => 4 * x / (1 - x** 2) ** 3; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [[-1, y1, -1, y2, 'red'], [1, y1, 1, y2, 'red']], fns = [[f, 'green'], [f1, 'blue'], [f2, 'orange']], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns1 .forEach((o) => { let [f, color] = o; lines.push([x1, f(x1), x2, f(x2), color]); }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿