学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第8章(指数関数と対数関数)、4(大きさの程度)、練習問題18.を取り組んでみる。
-
曲線の描画。
曲線の描画。
曲線の描画。
曲線の描画。
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, log, Limit, solve, Derivative, oo x = symbols('x') fs = [(x * log(x), 0), (x ** 2 * log(x), 0), (x * (log(x)) ** 2, 0), (x / log(x), 1)] for i, (f, x0) in enumerate(fs): print(f'({chr(ord("a") + i)})') for n in range(1, 3): Dn = Derivative(f, x, n) fn = Dn.doit() for t in [Dn, fn, solve(fn)]: pprint(t) print() print() for x1 in [x0, oo]: l = Limit(f, x, x1) for t in [l, l.doit()]: pprint(t) print() print() print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample18.py (a) d ──(x⋅log(x)) dx log(x) + 1 ⎡ -1⎤ ⎣ℯ ⎦ 2 d ───(x⋅log(x)) 2 dx 1 ─ x [] lim (x⋅log(x)) x─→0⁺ 0 lim (x⋅log(x)) x─→∞ ∞ (b) d ⎛ 2 ⎞ ──⎝x ⋅log(x)⎠ dx 2⋅x⋅log(x) + x ⎡ -1/2⎤ ⎣ℯ ⎦ 2 d ⎛ 2 ⎞ ───⎝x ⋅log(x)⎠ 2 dx 2⋅log(x) + 3 ⎡ -3/2⎤ ⎣ℯ ⎦ ⎛ 2 ⎞ lim ⎝x ⋅log(x)⎠ x─→0⁺ 0 ⎛ 2 ⎞ lim ⎝x ⋅log(x)⎠ x─→∞ ∞ (c) d ⎛ 2 ⎞ ──⎝x⋅log (x)⎠ dx 2 log (x) + 2⋅log(x) ⎡ -2⎤ ⎣1, ℯ ⎦ 2 d ⎛ 2 ⎞ ───⎝x⋅log (x)⎠ 2 dx 2⋅(log(x) + 1) ────────────── x ⎡ -1⎤ ⎣ℯ ⎦ ⎛ 2 ⎞ lim ⎝x⋅log (x)⎠ x─→0⁺ 0 ⎛ 2 ⎞ lim ⎝x⋅log (x)⎠ x─→∞ ∞ (d) d ⎛ x ⎞ ──⎜──────⎟ dx⎝log(x)⎠ 1 1 ────── - ─────── log(x) 2 log (x) [ℯ] 2 d ⎛ x ⎞ ───⎜──────⎟ 2⎝log(x)⎠ dx 2 -1 + ────── log(x) ─────────── 2 x⋅log (x) ⎡ 2⎤ ⎣ℯ ⎦ ⎛ x ⎞ lim ⎜──────⎟ x─→1⁺⎝log(x)⎠ ∞ ⎛ x ⎞ lim ⎜──────⎟ x─→∞⎝log(x)⎠ ∞ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-1"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-1"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample18.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let fa = (x) => x * Math.log(x), fb = (x) => x ** 2 * Math.log(x), fc = (x) => x * Math.log(x) ** 2, fd = (x) => x / Math.log(x); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [[1 / Math.E, y1, 1 / Math.E, y2, 'red'], [x1, -1 / Math.E, x2, -1 / Math.E, 'red'], [1 / Math.sqrt(Math.E), y1, 1 / Math.sqrt(Math.E), y2, 'green'], [x1, -1 / (2 * Math.E), x2, -1 / (2 * Math.E), 'green'], [Math.exp(-2), y1, Math.exp(-2), y2, 'blue'], [x1, 4 * Math.exp(-2), x2, 4 * Math.exp(-2), 'blue'], [Math.E, y1, Math.E, y2, 'orange'], [x1, Math.E, x2, Math.E, 'orange']], fns = [[fa, 'red'], [fb, 'green'], [fc, 'blue'], [fd, 'orange']], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns1 .forEach((o) => { let [f, color] = o; lines.push([x1, f(x1), x2, f(x2), color]); }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿