2017年12月8日金曜日

学習環境

解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2部(微分と基本的な関数)、第8章(指数関数と対数関数)、4(大きさの程度)、練習問題11.を取り組んでみる。


  1. a が負の数の場合。

    右辺の直線の傾きは負である。

    また、

    f x = e x

    の接線の傾きは任意の x に対して正である。

    よって、方程式は解をもつ。

    a が e より大きい数である場合。

    f x = e x

    の点

    x = 1 , y = e

    における接線は、

    g x = e 1 x - 1 + e = e x

    これは傾き e で原点を通る直線である。
    よって、

    a e

    ならば、直線

    a x , e x

    は交点をもつ。

    以上より、閃超の方程式は、

    0 a < e

    以外の任意の a に対して少なくとも1つの解をもつ。

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, exp, E, Derivative, solve, plot

a, x = symbols('a, x')
g = exp(x)
h = a * x
f = g - h

for t in [g, h, f, solve(f, x)]:
    pprint(t)
    print()

for n in range(1, 3):
    D = Derivative(f, x, n)
    for t in [D, D.doit(), solve(D.doit(), x)]:
        pprint(t)

p = plot(f.subs({a: 0}), f.subs({a: E / 2}),
         f.subs({a: E}), show=False, legend=True)
try:
    p.save('sample11.svg')

except Exception as err:
    print(type(err), err)

入出力結果(Terminal, Jupyter(IPython))

$ ./sample11.py
 x
ℯ 

a⋅x

        x
-a⋅x + ℯ 

⎡         ⎛-1 ⎞⎤
⎢-LambertW⎜───⎟⎥
⎣         ⎝ a ⎠⎦

∂ ⎛        x⎞
──⎝-a⋅x + ℯ ⎠
∂x           
      x
-a + ℯ 
[log(a)]
  2           
 ∂ ⎛        x⎞
───⎝-a⋅x + ℯ ⎠
  2           
∂x            
 x
ℯ 
[]
<class 'ValueError'> invalid version number '2.1.x'
$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">
<br>
<label for="a0">a = </label>
<input id="a0" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample11.js"></script>

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_a0 = document.querySelector('#a0'),    
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_a0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let f = (x) => Math.exp(x);
    

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        a0 = parseFloat(input_a0.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    

    let points = [],
        g = (x) => a0 * x,
        h = (x) => f(x) - g(x),
        lines = [],
        fns = [[f, 'red'],
               [g, 'green'],
               [h, 'blue']],
        fns1 = [],
        fns2 = [];

    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                points.push([x, y, color]);
            }
        });

    fns1
        .forEach((o) => {
            let [f, color] = o;
            
            lines.push([x1, f(x1), x2, f(x2), color]);
        });
        
    fns2
        .forEach((o) => {
           let [f, color] = o;

            for (let x = x1; x <= x2; x += dx0) {
                let g = f(x);
                lines.push([x1, g(x1), x2, g(x2), color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns, fns1, fns2].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








0 コメント:

コメントを投稿