学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
線型代数入門(松坂 和夫(著)、岩波書店)の第4章(複素数、複素ベクトル空間)、5(複素数と平面幾何学)、問題1.を取り組んでみる。
正三角形の各2つの辺のなす角を考えれば、必要十分条件は
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, I a, b, c = symbols('a, b, c', imag=True) eq = (c - a) / (b - a) - (a - b) / (c - b) for t in [eq, eq.expand(), eq.factor()]: pprint(t) print() a1, b1, a2, b2, a3, b3 = symbols('a1, b1, a2, b2, a3, b3', real=True) a = a1 + b1 * I b = a2 + b2 * I c = a3 + b3 * I eq = a ** 2 + b ** 2 + c ** 2 - b * c - c * a - a * b for t in [eq, eq.expand(), eq.factor()]: pprint(t) print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample1.py a - b -a + c - ────── + ────── -b + c -a + b a a b c - ────── - ────── + ────── + ────── -b + c -a + b -b + c -a + b 2 2 2 a - a⋅b - a⋅c + b - b⋅c + c ────────────────────────────── (a - b)⋅(b - c) 2 (a₁ + ⅈ⋅b₁) - (a₁ + ⅈ⋅b₁)⋅(a₂ + ⅈ⋅b₂) - (a₁ + ⅈ⋅b₁)⋅(a₃ + ⅈ⋅b₃) + (a₂ + ⅈ⋅b₂) 2 2 - (a₂ + ⅈ⋅b₂)⋅(a₃ + ⅈ⋅b₃) + (a₃ + ⅈ⋅b₃) 2 2 a₁ - a₁⋅a₂ - a₁⋅a₃ + 2⋅ⅈ⋅a₁⋅b₁ - ⅈ⋅a₁⋅b₂ - ⅈ⋅a₁⋅b₃ + a₂ - a₂⋅a₃ - ⅈ⋅a₂⋅b₁ + 2 2 2⋅ⅈ⋅a₂⋅b₂ - ⅈ⋅a₂⋅b₃ + a₃ - ⅈ⋅a₃⋅b₁ - ⅈ⋅a₃⋅b₂ + 2⋅ⅈ⋅a₃⋅b₃ - b₁ + b₁⋅b₂ + b₁⋅b 2 2 ₃ - b₂ + b₂⋅b₃ - b₃ 2 2 a₁ - a₁⋅a₂ - a₁⋅a₃ + 2⋅ⅈ⋅a₁⋅b₁ - ⅈ⋅a₁⋅b₂ - ⅈ⋅a₁⋅b₃ + a₂ - a₂⋅a₃ - ⅈ⋅a₂⋅b₁ + 2 2 2⋅ⅈ⋅a₂⋅b₂ - ⅈ⋅a₂⋅b₃ + a₃ - ⅈ⋅a₃⋅b₁ - ⅈ⋅a₃⋅b₂ + 2⋅ⅈ⋅a₃⋅b₃ - b₁ + b₁⋅b₂ + b₁⋅b 2 2 ₃ - b₂ + b₂⋅b₃ - b₃ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> <input id="a1" type="number" step="0.01" value="0"> + <input id="b1" type="number" step="0.01" value="0">i <br> <input id="a2" type="number" step="0.01" value="5"> + <input id="b2" type="number" step="0.01" value="0">i <br> <input id="a3" type="number" step="0.01" value="2.5"> + <input id="b3" type="number" step="0.01" value="4.3301">i <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample1.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_a1 = document.querySelector('#a1'), input_b1 = document.querySelector('#b1'), input_a2 = document.querySelector('#a2'), input_b2 = document.querySelector('#b2'), input_a3 = document.querySelector('#a3'), input_b3 = document.querySelector('#b3'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_a1, input_b1,input_a2, input_b2,input_a3, input_b3], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x) => Math.sqrt(1 - x ** 2), g = (x) => -f(x); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), a1 = parseFloat(input_a1.value), b1 = parseFloat(input_b1.value), a2 = parseFloat(input_a2.value), b2 = parseFloat(input_b2.value), a3 = parseFloat(input_a3.value), b3 = parseFloat(input_b3.value), real = a1 ** 2 - a1 * a2 - a1 * a3 + a2 ** 2 - a2 * a3 + a3 ** 2 - b1 ** 2 + b1 * b2 + b1 * b3 - b2 ** 2 + b2 * b3 - b3 ** 2, imag = 2 * a1 * b1 - a1 * b2 - a1 * b3 - a2 * b1 + 2 * a2 * b2 - a2 * b3 - a3 * b1 - a3 * b2 + 2 * a3 * b3; if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [[a1, b1, a2, b2, 'red'], [a2, b2, a3, b3, 'green'], [a3, b3, a1, b1, 'blue']], fns = [], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); p(`${real} + ${imag}i`); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
+ i
+ i
+ i
0 コメント:
コメントを投稿