学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
数学読本〈6〉線形写像・1次変換/数論へのプレリュード/集合論へのプレリュード/εとδ/落ち穂拾い など(松坂 和夫(著)、岩波書店)の第22章(図形の変換の方法 - 線形写像・1次変換)、22.2(平面の1次変換)、原点のまわりの回転、問11.を取り組んでみる。
-
問題の直線上の点(u, v)を原点のまわりに60度だけ回転した点を(x, y)とすれば、
また、
が成り立つので、
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, sqrt, solve, plot x, y = symbols('x, y') a = [ ( x + y - 1, (1 - sqrt(3)) * x + (sqrt(3) + 1) * y - 2 ), ( x ** 2 / 4 + y ** 2 - 1, 7 * x ** 2 + 13 * y ** 2 - 6 * sqrt(3) * x * y - 16 ), ( sqrt(x) + sqrt(y) - 1, sqrt(x + y) + sqrt(-x + y) - sqrt(2) ) ] fs = [] for i, (f, g) in enumerate(a, 1): print(f'({i})') for h in [f, g]: fs += solve(h, y) pprint(solve(h, y)) print() print() p = plot(*fs, show=False, legend=True) p.save('sample11.svg')
入出力結果(Terminal, Jupyter(IPython))
$ ./sample11.py (1) [-x + 1] [-√3⋅x + 2⋅x - 1 + √3] (2) ⎡ __________ __________⎤ ⎢ ╱ 2 ╱ 2 ⎥ ⎢-╲╱ - x + 4 ╲╱ - x + 4 ⎥ ⎢───────────────, ─────────────⎥ ⎣ 2 2 ⎦ ⎡ _____________ _____________⎤ ⎢ ╱ 2 ╱ 2 ⎥ ⎢3⋅√3⋅x 4⋅╲╱ - 4⋅x + 13 3⋅√3⋅x 4⋅╲╱ - 4⋅x + 13 ⎥ ⎢────── - ──────────────────, ────── + ──────────────────⎥ ⎣ 13 13 13 13 ⎦ (3) ⎡ 2⎤ ⎣(√x - 1) ⎦ ⎡ 2 ⎤ ⎢x 1⎥ ⎢── + ─⎥ ⎣2 2⎦ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.001" value="0.005"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample11.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f1 = (x) => -x + 1, f2 = (x) => -Math.sqrt(3) * x + 2 * x - 1 + Math.sqrt(3), g11 = (x) => -Math.sqrt(- (x ** 2) + 4) / 2, g12 = (x) => -g11(x), g21 = (x) => (3 * Math.sqrt(3) * x - 4 * Math.sqrt(-4 * x ** 2 + 13)) / 13, g22 = (x) => (3 * Math.sqrt(3) * x + 4 * Math.sqrt(-4 * x ** 2 + 13)) / 13, h1 = (x) => (Math.sqrt(x) - 1) ** 2, h2 = (x) => 1 / 2 * (x ** 2 + 1); let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [], fns = [[f1, 'red'], [f2, 'blue'], [g11, 'green'], [g12, 'green'], [g21, 'orange'], [g22, 'orange'], [h1, 'brown'], [h2, 'purple']], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns1 .forEach((o) => { let [f, color] = o; lines.push([x1, f(x1), x2, f(x2), color]); }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿