学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
線型代数入門(松坂 和夫(著)、岩波書店)の第5章(行列式)、7(積の行列式)、問題3.を取り組んでみる。
問題の3点が1直線上にあるための必要十分条件は、連立1次方程式、
が自明でない解をもつことと同等なので、定理5.12より、
を考えれば、
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, Matrix, solve A = Matrix([[symbols(f'x{i}') for i in range(1, 4)], [symbols(f'y{i}') for i in range(1, 4)], [1 for _ in range(3)]]).T for t in [A, A.det(), solve(A.det())]: pprint(t) print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample3.py ⎡x₁ y₁ 1⎤ ⎢ ⎥ ⎢x₂ y₂ 1⎥ ⎢ ⎥ ⎣x₃ y₃ 1⎦ x₁⋅y₂ - x₁⋅y₃ - x₂⋅y₁ + x₂⋅y₃ + x₃⋅y₁ - x₃⋅y₂ ⎡⎧ x₂⋅y₁ - x₂⋅y₃ - x₃⋅y₁ + x₃⋅y₂⎫⎤ ⎢⎨x₁: ─────────────────────────────⎬⎥ ⎣⎩ y₂ - y₃ ⎭⎦ $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.001"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-10"> <label for="x2">x2 = </label> <input id="x2" type="number" value="10"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-10"> <label for="y2">y2 = </label> <input id="y2" type="number" value="10"> <br> (<input id="a1" type="number" value="1"> , <input id="b1" type="number" value="2">) <br> (<input id="a2" type="number" value="2"> , <input id="b2" type="number" value="4">) <br> (<input id="a3" type="number" value="3"> , <input id="b3" type="number" value="6">) <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample3.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_a1 = document.querySelector('#a1'), input_b1 = document.querySelector('#b1'), input_a2 = document.querySelector('#a2'), input_b2 = document.querySelector('#b2'), input_a3 = document.querySelector('#a3'), input_b3 = document.querySelector('#b3'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_a1, input_b1,input_a2, input_b2,input_a3, input_b3], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (a1, b1, a2, b2, a3, b3) => a1 * b2 - a1 * b3 - a2 * b1 + a2 * b3 + a3 * b1 - a3 * b2; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), a1 = parseFloat(input_a1.value), b1 = parseFloat(input_b1.value), a2 = parseFloat(input_a2.value), b2 = parseFloat(input_b2.value), a3 = parseFloat(input_a3.value), b3 = parseFloat(input_b3.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [[a1, b1, a2, b2, 'red'], [a2, b2, a3, b3, 'green']], fns = [], fns1 = [], fns2 = []; fns .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx) { let y = f(x); points.push([x, y, color]); } }); fns2 .forEach((o) => { let [f, color] = o; for (let x = x1; x <= x2; x += dx0) { let g = f(x); lines.push([x1, g(x1), x2, g(x2), color]); } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); [fns, fns1, fns2].forEach((fs) => p(fs.join('\n'))); p(f(a1, b1, a2, b2, a3, b3)); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
( , )
( , )
( , )
0 コメント:
コメントを投稿