2018年1月14日日曜日

学習環境

もしかしたら、微分、導関数とニュートン商と似たような理由かも?

とりあえず、自分自身がどうか、二次方程式の解の公式を求めて(証明して)みた。

なるべく途中計算を省略せずに細かく。

a 0 a x 2 + b x + c = 0 a x 2 + b a x + c = 0 a x 2 + 2 b 2 a x + c = 0 a x 2 + 2 b 2 a x + b 2 a 2 - b 2 a 2 + c = 0 a x 2 + 2 b 2 a x + b 2 a 2 - a b 2 a 2 + c = 0 a x + b 2 a 2 - a b 2 a 2 + c = 0 a x + b 2 a 2 = a b 2 a 2 - c x + b 2 a 2 = b 2 a 2 - c a x + b 2 a 2 = b 2 4 a 2 - c a x + b 2 a 2 = b 2 4 a 2 - 4 a c 4 a 2 x + b 2 a 2 = b 2 - 4 a c 4 a 2 x + b 2 a = ± b 2 - 4 a c 4 a 2 x + b 2 a = ± b 2 - 4 a c 2 a x = - b 2 a ± b 2 - 4 a c 2 a x = - b ± b 2 - 4 a c 2 a

SymPy(Python)で確認。

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, solve

x, a, b, c = symbols('x, a, b, c')
eq = a * x ** 2 + b * x + c
for t in [eq, solve(eq, x)]:
    pprint(t)
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample.py
   2          
a⋅x  + b⋅x + c

⎡        _____________   ⎛       _____________⎞ ⎤
⎢       ╱           2    ⎜      ╱           2 ⎟ ⎥
⎢-b + ╲╱  -4⋅a⋅c + b    -⎝b + ╲╱  -4⋅a⋅c + b  ⎠ ⎥
⎢─────────────────────, ────────────────────────⎥
⎣         2⋅a                     2⋅a           ⎦

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.005">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-10">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="10">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-10">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="10">
<br>
<input id="a0" type="number" value="1">x^2 +
<input id="b0" type="number" value="4">x +
<input id="c0" type="number" value="2"> = 0

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample.js"></script>

D3.js(JavaScript)でグラフを描いて確認。

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_a0 = document.querySelector('#a0'),
    input_b0 = document.querySelector('#b0'),
    input_c0 = document.querySelector('#c0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2,
              input_a0, input_b0, input_c0],
    p = (x) => pre0.textContent += x + '\n',
    range = (start, end, step=1) => {
        let res = [];
        for (let i = start; i < end; i += step) {
            res.push(i);
        }
        return res;
    };

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value),
        a0 = parseFloat(input_a0.value),
        b0 = parseFloat(input_b0.value),
        c0 = parseFloat(input_c0.value);
        

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    

    let points = [],
        f = (x) => a0 * x ** 2 + b0 * x + c0,
        lines = [[(-b0 - Math.sqrt(b0 ** 2 - 4 * a0 * c0)) / (2 * a0),
                  y1,
                  (-b0 - Math.sqrt(b0 ** 2 - 4 * a0 * c0)) / (2 * a0),
                  y2,
                  'red'],
                 [(-b0 + Math.sqrt(b0 ** 2 - 4 * a0 * c0)) / (2 * a0),
                  y1,
                  (-b0 + Math.sqrt(b0 ** 2 - 4 * a0 * c0)) / (2 * a0),
                  y2,
                  'blue']],
        fns = [[f, 'green']];

    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                points.push([x, y, color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);
    p((-b0 - Math.sqrt(b0 ** 2 - 4 * a0 * c0)) / (2 * a0));
    p((-b0 + Math.sqrt(b0 ** 2 - 4 * a0 * c0)) / (2 * a0));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();








x^2 + x + = 0

0 コメント:

コメントを投稿