学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
解析入門〈3〉(松坂 和夫(著)、岩波書店)の第14章(多変数の関数)、14.2(高次偏導関数、テイラーの定理)、問題10-(c).を取り組んでみる。
-
よって、 求める3次のテイラー多項式は、
macOS High Sierraの標準搭載されているグラフ作成ソフト、Grapher で作成。
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, sqrt, Derivative, factorial a, b = symbols('a, b', nonzero=True) x, y = symbols('x, y') f = 1 / sqrt((1 + x) * (1 + y)) d = {x: 0, y: 0} Dx = Derivative(f, x, 1) Dy = Derivative(f, y, 1) Dxx = Derivative(f, x, 2) Dyy = Derivative(f, y, 2) Dxy = Derivative(Dx, y, 1) Dxxx = Derivative(f, x, 3) Dyyy = Derivative(f, y, 3) Dxxy = Derivative(Dxx, y, 1) Dxyy = Derivative(Dyy, x, 1) expr = f.subs(d) + (Dx.subs(d) * x + Dy.subs(d) * y) + 1 / factorial(2) * (Dxx.subs(d) * x ** 2 + 2 * Dxy.subs(d) * x * y + Dyy.subs(d) * y ** 2) + \ 1 / factorial(3) * (Dxxx.subs(d) * x ** 3 + 3 * Dxxy.subs(d) * x ** 2 * y + 3 * Dxyy.subs(d) * x * y ** 2 + Dyyy.subs(d) * y ** 3) for t in [f, expr, expr.doit()]: pprint(t) print()
入出力結果(Terminal, Jupyter(IPython))
$ ./sample10.py 1 ─────────────────── _________________ ╲╱ (x + 1)⋅(y + 1) ⎛ 3 ⎞│ ⎛ 2 ⎞│ 3 ⎜ d ⎛ 1 ⎞⎟│ 2 ⎜ d ⎛ 1 ⎞⎟│ x ⋅⎜───⎜─────────⎟⎟│ x ⋅⎜───⎜─────────⎟⎟│ ⎜ 3⎜ _______⎟⎟│ 2 ⎜ 2⎜ _______⎟⎟│ 2 ⎝dx ⎝╲╱ x + 1 ⎠⎠│x=0 3⋅x ⋅y ⎝dx ⎝╲╱ x + 1 ⎠⎠│x=0 3⋅x⋅y x⋅y ─────────────────────── - ────── + ─────────────────────── - ────── + ─── + x⋅ 6 16 2 16 4 ⎛ 3 ⎞│ ⎛ 2 ⎞│ 3 ⎜ d ⎛ 1 ⎞⎟│ 2 ⎜ d ⎛ 1 ⎞⎟│ y ⋅⎜───⎜─────────⎟⎟│ y ⋅⎜───⎜─────────⎟⎟│ ⎜ 3⎜ _______⎟⎟│ ⎜ 2⎜ _______⎟⎟│ ⎛d ⎛ 1 ⎞⎞│ ⎝dy ⎝╲╱ y + 1 ⎠⎠│y=0 ⎝dy ⎝╲╱ y + 1 ⎠⎠│y=0 ⎛d ⎜──⎜─────────⎟⎟│ + ─────────────────────── + ─────────────────────── + y⋅⎜─ ⎜dx⎜ _______⎟⎟│ 6 2 ⎜d ⎝ ⎝╲╱ x + 1 ⎠⎠│x=0 ⎝ ⎛ 1 ⎞⎞│ ─⎜─────────⎟⎟│ + 1 y⎜ _______⎟⎟│ ⎝╲╱ y + 1 ⎠⎠│y=0 3 2 2 2 3 2 5⋅x 3⋅x ⋅y 3⋅x 3⋅x⋅y x⋅y x 5⋅y 3⋅y y - ──── - ────── + ──── - ────── + ─── - ─ - ──── + ──── - ─ + 1 16 16 8 16 4 2 16 8 2 $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.005"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="y0">y0 = </label> <input id="y0" type="number" value="1"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample10.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_y0 = document.querySelector('#y0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_y0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let f = (x, y) => 1 / Math.sqrt((1 + x) * (1 + y)), g = (x, y) => 1 - (x + y) / 2 + (3 * x ** 2 + 2 * x * y + 3 * y ** 2) / 8 - (5 * x ** 3 + 3 * x ** 2 * y + 3 * x * y ** 2 + 5 * y ** 3) / 16; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), y0 = parseFloat(input_y0.value); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], lines = [], fns = [[(x) => f(x, y0), 'red'], [(x) => g(x, y0), 'green']]; fns .forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(fns.join('\n')); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
0 コメント:
コメントを投稿