学習環境
- Surface 3 (4G LTE)、Surface 3 タイプ カバー、Surface ペン(端末)
- Windows 10 Pro (OS)
- Nebo(Windows アプリ)
- iPad Pro + Apple Pencil
- MyScript Nebo(iPad アプリ)
- 参考書籍
解析入門〈3〉(松坂 和夫(著)、岩波書店)の第14章(多変数の関数)、14.5(積分記号下の微分)、問題2.を取り組んでみる。
左辺について。
dda∞∫0e(-ax2)dx=∞∫0e(-ax2)(-x2)dxまた、
dndan∞∫0e(-ax2)dx=dda∞∫0e(-ax2)(-1)(n-1)x(2(n-1))dx=∫∞0e(-ax2)(-1)nx(2n)dx右辺について。
また、
よって、帰納法より、
a に1を代入すると、
コード(Emacs)
Python 3
#!/usr/bin/env python3 from sympy import pprint, symbols, Integral, exp, oo, pi, sqrt, plot, Rational a = symbols('a', positive=True) n = symbols('n', integer=True) x = symbols('x') f = exp(-a * x ** 2) * x ** (2 * n) I = Integral(f, (x, 0, oo)) d = {a: 1, n: 10} for t in [I, I.doit(), I.subs(d).doit()]: pprint(t) print() result = 1 for i in range(1, 11): result *= (2 * i - 1) pprint(Rational(result, 2 ** (10 + 1)) * sqrt(pi)) p = plot(f.subs(d), show=False, legend=True) p.save('sample2.svg')
入出力結果(Terminal, Jupyter(IPython))
$ ./sample2.py ∞ ⌠ ⎮ 2 ⎮ 2⋅n -a⋅x ⎮ x ⋅ℯ dx ⌡ 0 ⎧ -n + 1/2 ⎪a ⋅Γ(n + 1/2) ⎪──────────────────── for -n + 1/2 < 1 ⎪ 2⋅a ⎪ ⎪ ∞ ⎨ ⌠ ⎪ ⎮ 2 ⎪ ⎮ 2⋅n -a⋅x ⎪ ⎮ x ⋅ℯ dx otherwise ⎪ ⌡ ⎪ 0 ⎩ 654729075⋅√π ──────────── 2048 654729075⋅√π ──────────── 2048 $
HTML5
<div id="graph0"></div> <pre id="output0"></pre> <label for="r0">r = </label> <input id="r0" type="number" min="0" value="0.5"> <label for="dx">dx = </label> <input id="dx" type="number" min="0" step="0.0001" value="0.005"> <br> <label for="x1">x1 = </label> <input id="x1" type="number" value="-5"> <label for="x2">x2 = </label> <input id="x2" type="number" value="5"> <br> <label for="y1">y1 = </label> <input id="y1" type="number" value="-5"> <label for="y2">y2 = </label> <input id="y2" type="number" value="5"> <br> <label for="n0">n = </label> <input id="n0" type="number" value="2"> <button id="draw0">draw</button> <button id="clear0">clear</button> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script> <script src="sample2.js"></script>
JavaScript
let div0 = document.querySelector('#graph0'), pre0 = document.querySelector('#output0'), width = 600, height = 600, padding = 50, btn0 = document.querySelector('#draw0'), btn1 = document.querySelector('#clear0'), input_r = document.querySelector('#r0'), input_dx = document.querySelector('#dx'), input_x1 = document.querySelector('#x1'), input_x2 = document.querySelector('#x2'), input_y1 = document.querySelector('#y1'), input_y2 = document.querySelector('#y2'), input_n0 = document.querySelector('#n0'), inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2, input_n0], p = (x) => pre0.textContent += x + '\n', range = (start, end, step=1) => { let res = []; for (let i = start; i < end; i += step) { res.push(i); } return res; }; let fns = [[(x) => Math.sin(x) ** 2, 'red']]; let draw = () => { pre0.textContent = ''; let r = parseFloat(input_r.value), dx = parseFloat(input_dx.value), x1 = parseFloat(input_x1.value), x2 = parseFloat(input_x2.value), y1 = parseFloat(input_y1.value), y2 = parseFloat(input_y2.value), n0 = parseInt(input_n0.value, 10); if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) { return; } let points = [], fns = [[(x) => Math.exp(-(x ** 2)) * x ** (2 * n0), 'red']], lines = []; fns .forEach((o) => { let [fn, color] = o; for (let x = x1; x <= x2; x += dx) { let y = fn(x); if (Math.abs(y) < Infinity) { points.push([x, y, color]); } } }); let xscale = d3.scaleLinear() .domain([x1, x2]) .range([padding, width - padding]); let yscale = d3.scaleLinear() .domain([y1, y2]) .range([height - padding, padding]); let xaxis = d3.axisBottom().scale(xscale); let yaxis = d3.axisLeft().scale(yscale); div0.innerHTML = ''; let svg = d3.select('#graph0') .append('svg') .attr('width', width) .attr('height', height); svg.selectAll('circle') .data(points) .enter() .append('circle') .attr('cx', (d) => xscale(d[0])) .attr('cy', (d) => yscale(d[1])) .attr('r', r) .attr('fill', (d) => d[2] || 'green'); svg.selectAll('line') .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines)) .enter() .append('line') .attr('x1', (d) => xscale(d[0])) .attr('y1', (d) => yscale(d[1])) .attr('x2', (d) => xscale(d[2])) .attr('y2', (d) => yscale(d[3])) .attr('stroke', (d) => d[4] || 'black'); svg.append('g') .attr('transform', `translate(0, ${height - padding})`) .call(xaxis); svg.append('g') .attr('transform', `translate(${padding}, 0)`) .call(yaxis); p(fns.join('\n')); }; inputs.forEach((input) => input.onchange = draw); btn0.onclick = draw; btn1.onclick = () => pre0.textContent = ''; draw();
(x) => Math.exp(-(x ** 2)) * x ** (2 * n0),red
0 コメント:
コメントを投稿