2018年9月16日日曜日

学習環境

解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第3部(積分)、第11章(積分の計算)、補充問題(三角関数に関する積分)11.を取り組んでみる。


  1. t = x 2 + 9 dt dx = x x 2 + 9 1 x x 2 + 9 dx = 1 x t · x 2 + 9 x dt = t x 2 t dt = 1 x 2 dt = 1 t 2 - 9 dt a t + 3 + b t - 3 = a + b t + 3 b - a t 2 - 9 a + b = 0 - a + b = 1 3 a = - 1 6 , b = 1 6 1 6 - 1 t + 3 + 1 t - 3 dt = 1 6 - log t + 3 + log t - 3 = 1 6 log t - 3 t + 3 = 1 6 log x 2 + 9 - 3 x 2 + 9 + 3 = 1 6 log x 2 + 9 - 3 2 x 2 = 1 3 log x 2 + 9 - 3 x

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, Integral, plot, sqrt, log, Derivative

print('11.')

x = symbols('x')
f = 1 / (x * sqrt(x ** 2 + 9))
I = Integral(f, x)
for t in [I, I.doit()]:
    pprint(t)
    print()

p = plot(f, I.doit(), legend=True, show=False)
colors = ['red', 'green']
for i, color in enumerate(colors):
    p[i].line_color = color
p.save('sample11.svg')

g = log((sqrt(x ** 2 + 9) - 3) / x) / 3
d = Derivative(g, x, 1)
for t in [d, d.doit().factor()]:
    pprint(t)
    print()

入出力結果(Terminal, Jupyter(IPython))

$ ./sample11.py
11.
⌠                 
⎮       1         
⎮ ───────────── dx
⎮      ________   
⎮     ╱  2        
⎮ x⋅╲╱  x  + 9    
⌡                 

      ⎛3⎞ 
-asinh⎜─⎟ 
      ⎝x⎠ 
──────────
    3     

  ⎛   ⎛   ________    ⎞⎞
  ⎜   ⎜  ╱  2         ⎟⎟
  ⎜   ⎜╲╱  x  + 9  - 3⎟⎟
  ⎜log⎜───────────────⎟⎟
d ⎜   ⎝       x       ⎠⎟
──⎜────────────────────⎟
dx⎝         3          ⎠

      1      
─────────────
     ________
    ╱  2     
x⋅╲╱  x  + 9 

$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample11.js"></script>

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_n0 = document.querySelector('#n0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n';

let f = (x) => 1 / (x * Math.sqrt(x ** 2 + 9)),
    g = (x) => -Math.asinh(3 / x) / 3,
    h = (x) => 1 / 3 * Math.log((Math.sqrt(x ** 2 + 9) - 3) / x),
    fns = [[f, 'red'],
           [g, 'green'],
           [h, 'blue']];

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    
    
    let points = [],
        lines = [];

    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                points.push([x, y, color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿