2018年9月25日火曜日

学習環境

解析入門 原書第3版 (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第3部(積分)、第11章(積分の計算)、補充問題(三角関数に関する積分)19.を取り組んでみる。


  1. t = a 2 + x 2 dt dx = x a 2 + x 2 1 x a 2 + x 2 dx = 1 x t · a 2 + x 2 x dt = 1 x 2 dt = 1 t 2 - a 2 dt = 1 t + a t - a dt A t + a + B t - a = A + B t + - A + B a t + a t - a A + B = 0 - A + B = 1 a B = 1 2 a , A = - 1 2 a - 1 2 a 1 t + a - 1 t - a dt = - 1 2 a log t + a - log t - a = - 1 2 a log t + a t - a = - 1 2 a log a 2 + x 2 + a a 2 + x 2 - a = - 1 2 a log a 2 + x 2 + a 2 x 2 = - 1 a log a 2 + x 2 + a x

コード(Emacs)

Python 3

#!/usr/bin/env python3
from sympy import pprint, symbols, Integral, plot, sqrt, Rational, Derivative, log

print('19.')

a, x = symbols('a, x')
f = 1 / (x * sqrt(a ** 2 + x ** 2))
I = Integral(f, x)
for t in [I, I.doit().simplify()]:
    pprint(t)
    print()

a0 = 2
p = plot(f.subs({a: a0}), I.doit().subs({a: a0}), legend=True, show=False)
colors = ['red', 'green']
for i, c in enumerate(colors):
    p[i].line_color = c
p.save('sample19.svg')

g = -1 / a * log((sqrt(a ** 2 + x ** 2) + a) / x)

d = Derivative(g, x, 1)
for t in [d, d.doit().simplify()]:
    pprint(t)
    print()

pprint((d.doit() - 1 / (x * sqrt(a ** 2 + x ** 2))).simplify())

入出力結果(Terminal, Jupyter(IPython))

$ ./sample19.py
19.
⌠                  
⎮       1          
⎮ ────────────── dx
⎮      _________   
⎮     ╱  2    2    
⎮ x⋅╲╱  a  + x     
⌡                  

      ⎛a⎞ 
-asinh⎜─⎟ 
      ⎝x⎠ 
──────────
    a     

  ⎛    ⎛       _________⎞ ⎞
  ⎜    ⎜      ╱  2    2 ⎟ ⎟
  ⎜    ⎜a + ╲╱  a  + x  ⎟ ⎟
  ⎜-log⎜────────────────⎟ ⎟
∂ ⎜    ⎝       x        ⎠ ⎟
──⎜───────────────────────⎟
∂x⎝           a           ⎠

             _________      
            ╱  2    2       
      a + ╲╱  a  + x        
────────────────────────────
  ⎛          _________     ⎞
  ⎜ 2       ╱  2    2     2⎟
x⋅⎝a  + a⋅╲╱  a  + x   + x ⎠

0
$

HTML5

<div id="graph0"></div>
<pre id="output0"></pre>
<label for="r0">r = </label>
<input id="r0" type="number" min="0" value="0.5">
<label for="dx">dx = </label>
<input id="dx" type="number" min="0" step="0.001" value="0.001">
<br>
<label for="x1">x1 = </label>
<input id="x1" type="number" value="-5">
<label for="x2">x2 = </label>
<input id="x2" type="number" value="5">
<br>
<label for="y1">y1 = </label>
<input id="y1" type="number" value="-5">
<label for="y2">y2 = </label>
<input id="y2" type="number" value="5">

<button id="draw0">draw</button>
<button id="clear0">clear</button>

<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.2.6/d3.min.js" integrity="sha256-5idA201uSwHAROtCops7codXJ0vja+6wbBrZdQ6ETQc=" crossorigin="anonymous"></script>

<script src="sample19.js"></script>

JavaScript

let div0 = document.querySelector('#graph0'),
    pre0 = document.querySelector('#output0'),
    width = 600,
    height = 600,
    padding = 50,
    btn0 = document.querySelector('#draw0'),
    btn1 = document.querySelector('#clear0'),
    input_r = document.querySelector('#r0'),
    input_dx = document.querySelector('#dx'),
    input_x1 = document.querySelector('#x1'),
    input_x2 = document.querySelector('#x2'),
    input_y1 = document.querySelector('#y1'),
    input_y2 = document.querySelector('#y2'),
    input_n0 = document.querySelector('#n0'),
    inputs = [input_r, input_dx, input_x1, input_x2, input_y1, input_y2],
    p = (x) => pre0.textContent += x + '\n';

let f = (x) => -1 / 2 * Math.log((Math.sqrt(2 ** 2 + x ** 2) + 2) / x),
    g = (x) => 1 / (x * Math.sqrt(2 ** 2 + x ** 2)),
    fns = [[f, 'red'],
           [g, 'green']];

let draw = () => {
    pre0.textContent = '';

    let r = parseFloat(input_r.value),
        dx = parseFloat(input_dx.value),
        x1 = parseFloat(input_x1.value),
        x2 = parseFloat(input_x2.value),
        y1 = parseFloat(input_y1.value),
        y2 = parseFloat(input_y2.value);

    if (r === 0 || dx === 0 || x1 > x2 || y1 > y2) {
        return;
    }    
    
    let points = [],
        lines = [];

    fns
        .forEach((o) => {
            let [f, color] = o;
            for (let x = x1; x <= x2; x += dx) {
                let y = f(x);

                points.push([x, y, color]);
            }
        });
    
    let xscale = d3.scaleLinear()
        .domain([x1, x2])
        .range([padding, width - padding]);
    let yscale = d3.scaleLinear()
        .domain([y1, y2])
        .range([height - padding, padding]);

    let xaxis = d3.axisBottom().scale(xscale);
    let yaxis = d3.axisLeft().scale(yscale);
    div0.innerHTML = '';
    let svg = d3.select('#graph0')
        .append('svg')
        .attr('width', width)
        .attr('height', height);

    svg.selectAll('line')
        .data([[x1, 0, x2, 0], [0, y1, 0, y2]].concat(lines))
        .enter()
        .append('line')
        .attr('x1', (d) => xscale(d[0]))
        .attr('y1', (d) => yscale(d[1]))
        .attr('x2', (d) => xscale(d[2]))
        .attr('y2', (d) => yscale(d[3]))
        .attr('stroke', (d) => d[4] || 'black');

    svg.selectAll('circle')
        .data(points)
        .enter()
        .append('circle')
        .attr('cx', (d) => xscale(d[0]))
        .attr('cy', (d) => yscale(d[1]))
        .attr('r', r)
        .attr('fill', (d) => d[2] || 'green');

    svg.append('g')
        .attr('transform', `translate(0, ${height - padding})`)
        .call(xaxis);

    svg.append('g')
        .attr('transform', `translate(${padding}, 0)`)
        .call(yaxis);

    [fns].forEach((fs) => p(fs.join('\n')));
};

inputs.forEach((input) => input.onchange = draw);
btn0.onclick = draw;
btn1.onclick = () => pre0.textContent = '';
draw();







0 コメント:

コメントを投稿